Translate

Τρίτη 15 Οκτωβρίου 2019

Determining the Sites of Neural Adaptations to Resistance Training: A Systematic Review and Meta-Analysis

Correction to: Applied Physiology of Rugby League
The original article ‘Science of Rugby League Football: A Review’

How the 2018 US Physical Activity Guidelines are a Call to Promote and Better Understand Acute Physical Activity for Cognitive Function Gains

Effectiveness of Education Interventions Designed to Improve Nutrition Knowledge in Athletes: A Systematic Review

Abstract

Background

A range of nutrition education strategies are used to assist athletes to improve nutrition knowledge. Evaluation of nutrition education interventions guides the delivery of efficacious nutrition education for athletes.

Aim

Our aim was to systematically review sport/general nutrition education interventions delivered to athletes, and to evaluate their effectiveness.

Methods

A search was conducted using terms related to nutrition knowledge, athletes, education, and intervention. Included studies had to be conducted in athletes (all calibres), use a scored nutrition knowledge assessment tool, and measure knowledge before and after a nutrition education intervention. Peer-reviewed and unpublished theses were included.

Results

Thirty-two manuscripts (randomised controlled trial, n = 13; single-arm pre/post design, n = 19) met the inclusion criteria. Participants (n = 2180; mean age 17.4 ± 1.7 years) were mostly female (66.1%), university-level (56.3%) athletes based in the US (75%). Comparison of different education methods was limited since the majority of interventions (n = 28/36, 77.8%) used face-to-face education. Most intervention conditions (n = 19) had a total contact time of < 300 min (5 h). The majority of interventions (n = 30, 85.7%) reported significant knowledge improvement, with a mean increase of 16.1 ± 0.7% (mean effect size 1.72; range 0.4–17.1). Only 15.6% of studies used well-validated knowledge assessment tools (more than three types of validity or reliability testing).

Conclusions

Most interventions reported a significant improvement in nutrition knowledge. Unfortunately, the wide range of knowledge assessment tools with limited validation, and the predominant use of face-to-face interventions, prohibits identification of the most effective modality and dose for nutrition education in athletes.

The Effect of Low-Volume High-Intensity Interval Training on Body Composition and Cardiorespiratory Fitness: A Systematic Review and Meta-Analysis

Abstract

Background

Evidence for the efficacy of low-volume high-intensity interval training (HIIT) for the modulation of body composition is unclear.

Objectives

We examined the effect of low-volume HIIT versus a non-exercising control and moderate-intensity continuous training (MICT) on body composition and cardiorespiratory fitness in normal weight, overweight and obese adults. We evaluated the impact of low-volume HIIT (HIIT interventions where the total amount of exercise performed during training was ≤ 500 metabolic equivalent minutes per week [MET-min/week]) compared to a non-exercising control and MICT.

Methods

A database search was conducted in PubMed (MEDLINE), EMBASE, CINAHL, Web of Science, SPORTDiscus and Scopus from the earliest record to June 2019 for studies (randomised controlled trials and non-randomised controlled trials) with exercise training interventions with a minimum 4-week duration. Meta-analyses were conducted for between-group (low-volume HIIT vs. non-exercising control and low-volume HIIT vs. MICT) comparisons for change in total body fat mass (kg), body fat percentage (%), lean body mass (kg) and cardiorespiratory fitness.

Results

From 11,485 relevant records, 47 studies were included. No difference was found between low-volume HIIT and a non-exercising control on total body fat mass (kg) (effect size [ES]: − 0.129, 95% confidence interval [CI] − 0.468 to 0.210; p = 0.455), body fat (%) (ES: − 0.063, 95% CI − 0.383 to 0.257; p = 0.700) and lean body mass (kg) (ES: 0.050, 95% CI − 0.250 to 0.351; p = 0.744), or between low-volume HIIT and MICT on total body fat mass (kg) (ES: − 0.021, 95% CI − 0.272 to 0.231; p = 0.872), body fat (%) (ES: 0.005, 95% CI − 0.294 to 0.304; p = 0.974) and lean body mass (kg) (ES: 0.030, 95% CI − 0.167 to 0.266; p = 0.768). However, low-volume HIIT significantly improved cardiorespiratory fitness compared with a non-exercising control (p < 0.001) and MICT (p = 0.017).

Conclusion

These data suggest that low-volume HIIT is inefficient for the modulation of total body fat mass or total body fat percentage in comparison with a non-exercise control and MICT. A novel finding of our meta-analysis was that there appears to be no significant effect of low-volume HIIT on lean body mass when compared with a non-exercising control, and while most studies tended to favour improvement in lean body mass with low-volume HIIT versus MICT, this was not significant. However, despite its lower training volume, low-volume HIIT induces greater improvements in cardiorespiratory fitness than a non-exercising control and MICT in normal weight, overweight and obese adults. Low-volume HIIT, therefore, appears to be a time-efficient treatment for increasing fitness, but not for the improvement of body composition.

Is Fatigue a Risk Factor for Anterior Cruciate Ligament Rupture?

Abstract

Neuromuscular fatigue is a commonly accepted risk factor for anterior cruciate ligament (ACL) injury. It has been proposed that fatigue leads to transient reductions in muscle strength, and deleterious changes in lower limb kinematics and kinetics, during potentially hazardous tasks such as cutting or landing. The purpose of this clinical commentary is to (1) highlight the complexity of fatigue; (2) discuss the theoretical basis by which it is thought to contribute to ACL injury; and (3) critically discuss the evidence underpinning this hypothesis. Despite a significant amount of research, none of the published fatigue protocols appear to have any consistent effect on any lower limb kinematic or kinetic variables known to increase ACL injury risk. On the contrary, fatigued athletes appear to land with greater peak knee and hip flexion angles, and lower landing forces than unfatigued athletes—all of which are considered favourable movement strategies for reducing ACL loading. These data support recent analyses demonstrating no relationship between player workload in training and competition and the occurrence of ACL injury in sport.

Comparing the Effectiveness of Blood Flow Restriction and Traditional Heavy Load Resistance Training in the Post-Surgery Rehabilitation of Anterior Cruciate Ligament Reconstruction Patients: A UK National Health Service Randomised Controlled Trial

Abstract

Background

We implemented a blood flow restriction resistance training (BFR-RT) intervention during an 8-week rehabilitation programme in anterior cruciate ligament reconstruction (ACLR) patients within a National Health Service setting.

Objective

To compare the effectiveness of BFR-RT and standard-care traditional heavy-load resistance training (HL-RT) at improving skeletal muscle hypertrophy and strength, physical function, pain and effusion in ACLR patients following surgery.

Methods

28 patients scheduled for unilateral ACLR surgery with hamstring autograft were recruited for this parallel-group, two-arm, single-assessor blinded, randomised clinical trial following appropriate power analysis. Following surgery, a criteria-driven approach to rehabilitation was utilised and participants were block randomised to either HL-RT at 70% repetition maximum (1RM) (n = 14) or BFR-RT (n = 14) at 30% 1RM. Participants completed 8 weeks of biweekly unilateral leg press training on both limbs, totalling 16 sessions, alongside standard hospital rehabilitation. Resistance exercise protocols were designed consistent with standard recommended protocols for each type of exercise. Scaled maximal isotonic strength (10RM), muscle morphology of the vastus lateralis of the injured limb, self-reported function, Y-balance test performance and knee joint pain, effusion and range of motion (ROM) were assessed at pre-surgery, post-surgery, mid-training and post-training. Knee joint laxity and scaled maximal isokinetic knee extension and flexion strength at 60°/s, 150°/s and 300°/s were measured at pre-surgery and post-training.

Results

Four participants were lost, with 24 participants completing the study (12 per group). There were no adverse events or differences between groups for any baseline anthropometric variable or pre- to post-surgery change in any outcome measure. Scaled 10RM strength significantly increased in the injured limb (104 ± 30% and 106 ± 43%) and non-injured limb (33 ± 13% and 39 ± 17%) with BFR-RT and HL-RT, respectively, with no group differences. Significant increases in knee extension and flexion peak torque were observed at all speeds in the non-injured limb with no group differences. Significantly greater attenuation of knee extensor peak torque loss at 150°/s and 300°/s and knee flexor torque loss at all speeds was observed with BFR-RT. No group differences in knee extensor peak torque loss were found at 60°/s. Significant and comparable increases in muscle thickness (5.8 ± 0.2% and 6.7 ± 0.3%) and pennation angle (4.1 ± 0.3% and 3.4 ± 0.1%) were observed with BFR-RT and HL-RT, respectively, with no group differences. No significant changes in fascicle length were observed. Significantly greater and clinically important increases in several measures of self-reported function (50–218 ± 48% vs. 35–152 ± 56%), Y-balance performance (18–59 ± 22% vs. 18–33 ± 19%), ROM (78 ± 22% vs. 48 ± 13%) and reductions in knee joint pain (67 ± 15% vs. 39 ± 12%) and effusion (6 ± 2% vs. 2 ± 2%) were observed with BFR-RT compared to HL-RT, respectively.

Conclusion

BFR-RT can improve skeletal muscle hypertrophy and strength to a similar extent to HL-RT with a greater reduction in knee joint pain and effusion, leading to greater overall improvements in physical function. Therefore, BFR-RT may be more appropriate for early rehabilitation in ACLR patient populations within the National Health Service.

Contemporary Periodization of Altitude Training for Elite Endurance Athletes: A Narrative Review

Abstract

Since the 1960s there has been an escalation in the purposeful utilization of altitude to enhance endurance athletic performance. This has been mirrored by a parallel intensification in research pursuits to elucidate hypoxia-induced adaptive mechanisms and substantiate optimal altitude protocols (e.g., hypoxic dose, duration, timing, and confounding factors such as training load periodization, health status, individual response, and nutritional considerations). The majority of the research and the field-based rationale for altitude has focused on hematological outcomes, where hypoxia causes an increased erythropoietic response resulting in augmented hemoglobin mass. Hypoxia-induced non-hematological adaptations, such as mitochondrial gene expression and enhanced muscle buffering capacity may also impact athletic performance, but research in elite endurance athletes is limited. However, despite significant scientific progress in our understanding of hypobaric hypoxia (natural altitude) and normobaric hypoxia (simulated altitude), elite endurance athletes and coaches still tend to be trailblazers at the coal face of cutting-edge altitude application to optimize individual performance, and they already implement novel altitude training interventions and progressive periodization and monitoring approaches. Published and field-based data strongly suggest that altitude training in elite endurance athletes should follow a long- and short-term periodized approach, integrating exercise training and recovery manipulation, performance peaking, adaptation monitoring, nutritional approaches, and the use of normobaric hypoxia in conjunction with terrestrial altitude. Future research should focus on the long-term effects of accumulated altitude training through repeated exposures, the interactions between altitude and other components of a periodized approach to elite athletic preparation, and the time course of non-hematological hypoxic adaptation and de-adaptation, and the potential differences in exercise-induced altitude adaptations between different modes of exercise.

Quality of Life and Life Satisfaction in Former Athletes: A Systematic Review and Meta-Analysis

Abstract

Background

Sport participation has many physical and psychosocial benefits, but there is also an inherent risk of injury, subsequent osteoarthritis and psychological challenges that can negatively impact quality of life (QOL). Considering the multifaceted impacts of sport participation on QOL across the lifespan, there is a need to consolidate and present the evidence on QOL in former sport participants.

Objective

To evaluate QOL and life satisfaction in former sport participants, and determine what factors are associated with QOL and life satisfaction in this population.

Methods

Eight electronic databases were systematically searched in July 2018 to retrieve all articles that evaluated QOL or life satisfaction in former sport participants. Two authors independently screened titles/abstracts and full texts, extracted data, and appraised methodological quality using a modified Downs and Black Checklist. Random-effects meta-analysis estimated pooled mean and 95% confidence intervals (Cis) for Mental Component Scores (MCS) and Physical Component Scores (PCS) derived from the SF-12, SF-36, VR-12 and VR-36 measures. MCS and PCS were pooled for all former sport participants, as well as professional- and collegiate-athlete subgroups. Data that were inappropriate for meta-analysis (i.e. EQ-5D, PROMIS and life-satisfaction outcomes) were collated and reported descriptively.

Results

Seventeen articles evaluated QOL or life satisfaction in a total of 6692 former athletes [eight studies (n = 4255) former professional athletes; six studies (n = 1946) former collegiate athletes; two studies (n = 491) included both] with a mean age ranging from 21 to 66 years. Most studies were cross-sectional (15 of 17 articles) and 12 studies had a moderate risk of bias (n = 1 high-risk, n = 4 low-risk). Unpublished data were provided for five studies. Meta-analysis of seven studies resulted in a pooled PCS mean (95% CI) of 50.0 (46.6–53.3) [former professional athletes from two studies: 46.7 (42.1–51.2), former collegiate athletes from five studies: 51.2 (48.4–53.9)] and a pooled MCS of 51.4 (50.5–52.2) [former professional athletes: 52.7 (51.3–54.2), former collegiate athletes: 50.9 (50.0–51.8)]. Factors associated with worse QOL or life satisfaction in former athletes included involuntary retirement from sport (three studies), collision/high-contact sport compared with low/no-contact sport (three studies), three or more concussions compared with no/fewer concussions (two studies), increased body mass index (BMI) (worse PCS, three studies), and osteoarthritis or musculoskeletal issues (worse PCS and MCS, three studies; worse PCS but not MCS, two studies).

Conclusions

Former athletes had similar PCS and better MCS, compared to general-population norms. Former athletes with impaired PCS reported better MCS than population norms, highlighting the need to use an instrument that differentiates between physical and mental components of QOL in former sport participants. Factors associated with worse QOL that may explain between-study variation include involuntary retirement, collision/high contact sports, concussion, BMI and osteoarthritis.

PROSPERO

CRD42018104319.

Resistance Training and Skeletal Muscle Protein Metabolism in Eumenorrheic Females: Implications for Researchers and Practitioners

Abstract

Resistance training is essential for health and performance and confers many benefits such as increasing skeletal muscle mass, increasing strength and power output, and improving metabolic health. Resistance training is a major component of the physical activity guidelines, yet research in female populations is limited. Recent increases in the promotion of, and the participation by, females in sport and exercise, highlight the need for an increase in understanding of evidence-based best practice exercise prescription for females. The aim of this review is to provide an overview of the current research regarding resistance training performance and skeletal muscle adaptation in females, with a focus on the hormonal variables that may influence resistance training outcomes. Findings suggest that the menstrual cycle phase may impact strength, but not skeletal muscle protein metabolism. In comparison, oral contraception use in females may reduce skeletal muscle protein synthesis, but not strength outcomes, when compared to non-users. Future research should investigate the role of resistance training in the maintenance of skeletal muscle protein metabolism during pregnancy, menopause and in athletes experiencing relative energy deficiency in sport. The review concludes with recommendations for researchers to assist them in the inclusion of female participants in resistance training research specifically, with commentary on the most appropriate methods of controlling for, or understanding the implications of, hormonal fluctuations. For practitioners, the current evidence suggests possible resistance training practices that could optimise performance outcomes in females, although further research is warranted.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate