Translate

Κυριακή 20 Οκτωβρίου 2019

The role of fixation disengagement in the parallel programming of sequences of saccades

Abstract

One of the core mechanisms involved in the control of saccade responses to selected target stimuli is the disengagement from the current fixation location, so that the next saccade can be executed. To carry out everyday visual tasks, we make multiple eye movements that can be programmed in parallel. However, the role of disengagement in the parallel programming of saccades has not been examined. It is well established that the need for disengagement slows down saccadic response time. This may be important in allowing the system to program accurate eye movements and have a role to play in the control of multiple eye movements but as yet this remains untested. Here, we report two experiments that seek to examine whether fixation disengagement reduces saccade latencies when the task completion demands multiple saccade responses. A saccade contingent paradigm was employed and participants were asked to execute saccadic eye movements to a series of seven targets while manipulating when these targets were shown. This both promotes fixation disengagement and controls the extent that parallel programming can occur. We found that trial duration decreased as more targets were made available prior to fixation: this was a result both of a reduction in the number of saccades being executed and in their saccade latencies. This supports the view that even when fixation disengagement is not required, parallel programming of multiple sequential saccadic eye movements is still present. By comparison with previous published data, we demonstrate a substantial speeded of response times in these condition (“a gap effect”) and that parallel programming is attenuated in these conditions.

Short-interval intracortical inhibition of the biceps brachii in chronic-resistance versus non-resistance-trained individuals

Abstract

The purpose of this study was to investigate the effects of chronic resistance training on corticospinal excitability and short intracortical inhibition of the biceps brachii. Eight chronic resistance-trained (RT) and eight non-RT participants completed one experimental session including a total of 30 brief (7 s) elbow flexors isometric contractions at various force outputs [15, 25 and 40% of maximum voluntary contraction (MVC)]. Before the contractions, MVC, maximal compound muscle action potential (Mmax) during 5% MVC and active motor threshold (AMT) at the three various force outputs were recorded. MVC force of the chronic-RT group was 24% higher than the non-RT group (p ≤ 0.001; ω2 = 0.72). The chronic-RT group had lower AMTs at targeted forces of 15 and 25% MVC (p = 0.022 and p = 0.012, respectively) compared to the non-RT group. During 25 and 40% of MVC, the non-RT group exhibited decreased SICI in comparison to the chronic-RT group (p = 0.008; ω2 = 0.35 and p = 0.03; ω2 = 0.21, respectively). However, SICI did not differ between groups at 15% MVC (p = 0.62). In conclusion, chronic resistance training significantly reduces SICI. This suggests the presence of an adaptive process of inhibitory and facilitatory network activation, which may cancel out the SICI, allowing for increased corticomotor drive to the exercised muscle following a long period of resistance training.

The effects of risk magnitude training on mapping risks on space

Abstract

Risk perception has recently been shown to reveal a mental spatial representation, with people responding faster to low-risk items on the left side, and high-risk items on the right side. Subjective risk perception has a stronger spatial representation than objective risk perception; however, both reveal small effect sizes. With risk magnitude being a new domain within spatial mapping literature, we sought to explore its nuances. Following discussion surrounding the relationship between spatial mapping and level of expertise, this study investigated the effect of training an objective risk magnitude sequence on mental spatial representations. Participants (n = 34) used their left and right hands to indicate whether eight risk stimuli were lower or higher risk than a referent activity, both before and after training. Training involved repetitively learning the objectively correct order of the same eight risk stimuli for approximately 15 min. Pre-training results demonstrated the expected spatial representations. Contrary to our predictions, the spatial representation did not get stronger post-training, but instead disappeared. Previous research has demonstrated a loss of spatial-numerical mappings with increased task load. An increase in post-training reaction times could reflect an increase in task load due to a lack of adequate knowledge of risk stimulus order; thus revealing no mental spatial representation. However, failure to find training effects highlights the flexibility of weaker spatial representations, and supports research demonstrating spatial representation flexibility.

Effects of single-session cathodal transcranial direct current stimulation on tic symptoms in Tourette’s syndrome

Abstract

Tourette syndrome is a neurodevelopmental disorder characterised by motor and phonic tics. For some, tics can be managed using medication and/or forms of behavioural therapy; however, adverse side effects and access to specialist resources can be barriers to treatment. In this sham-controlled brain stimulation study, we investigated the effects of transcranial direct current stimulation (tDCS) on the occurrence of tics and motor cortical excitability in individuals aged 16–33 years with Tourette syndrome. Changes in tics were measured using video recordings scored using the RUSH method (Goetz et al. in Mov Disord 14:502–506, 1999) and changes in cortical excitability were measured using single-pulse transcranial magnetic stimulation (spTMS) over the primary motor cortex (M1). Video recordings and spTMS measures were taken before and after 20 min of sham or active tDCS: during which cathodal current was delivered to an electrode placed above the supplementary motor area (SMA). Tic impairment scores, calculated from the video data, were significantly lower post-cathodal stimulation in comparison with post-sham stimulation; however, the interaction between time (pre/post) and stimulation (cathodal/sham) was not significant. There was no indication of a statistically significant change in M1 cortical excitability following SMA stimulation. This study presents tentative evidence that tDCS may be helpful in reducing tics for some individuals, and provides a foundation for larger scale explorations of the use of tDCS as a treatment for reducing tics.

Pleiotrophin increases neurite length and number of spiral ganglion neurons in vitro

Abstract

Acoustic trauma, aging, genetic defects or ototoxic drugs are causes for sensorineural hearing loss involving sensory hair cell death and secondary degeneration of spiral ganglion neurons. Auditory implants are the only available therapy for severe to profound sensorineural hearing loss when hearing aids do not provide a sufficient speech discrimination anymore. Neurotrophic factors represent potential therapeutic candidates to improve the performance of cochlear implants (CIs) by the support of spiral ganglion neurons (SGNs). Here, we investigated the effect of pleiotrophin (PTN), a well-described neurotrophic factor for different types of neurons that is expressed in the postnatal mouse cochlea. PTN knockout mice exhibit severe deficits in auditory brainstem responses, which indicates the importance of PTN in inner ear development and function and makes it a promising candidate to support SGNs. Using organotypic explants and dissociated SGN cultures, we investigated the influence of PTN on the number of neurons, neurite number and neurite length. PTN significantly increased the number and neurite length of dissociated SGNs. We further verified the expression of important PTN-associated receptors in the SG. mRNA of anaplastic lymphoma kinase, αv integrin, β3 integrin, receptor protein tyrosine phosphatase β/ζ, neuroglycan C, low-density lipoprotein receptor-related protein 1 and syndecan 3 was detected in the inner ear. These results suggest that PTN may be a novel candidate to improve sensorineural hearing loss treatment in the future.

Recurrent antinociception induced by intrathecal or peripheral oxytocin in a neuropathic pain rat model

Abstract

The search for new ligands to treat neuropathic pain remains a challenge. Recently, oxytocin has emerged as an interesting molecule modulating nociception at central and peripheral levels, but no attempt has been made to evaluate the effect of recurrent oxytocin administration in neuropathic pain. Using male Wistar rats with spinal nerve ligation, we evaluated the effects of recurrent spinal (1 nmol; given by lumbar puncture) or peripheral (31 nmol; given by intraplantar injection in the ipsilateral paw to spinal nerve ligation) oxytocin administration on pain-like behavior in several nociceptive tests (tactile allodynia and thermal and mechanical hyperalgesia) on different days. Furthermore, we used an electrophysiological approach to analyze the effect of spinal 1 nmol oxytocin on the activity of spinal dorsal horn wide dynamic range cells. In neuropathic rats, spinal or peripheral oxytocin partially restored the nociceptive threshold measured with the von Frey filaments (tactile allodynia), Hargreaves (thermal hyperalgesia) and Randall–Selitto (mechanical hyperalgesia) tests for 12 days. These results agree with electrophysiological data showing that spinal oxytocin diminishes the neuronal firing of the WDR neurons evoked by peripheral stimulation. This effect was associated with a decline in the activity of primary afferent Aδ- and C-fibers. The above findings show that repeated spinal or peripheral oxytocin administration attenuates the pain-like behavior in a well-established model of neuropathic pain. This study provides a basis for addressing the therapeutic relevance of oxytocin in chronic pain conditions.

Working memory in action: inspecting the systematic and unsystematic errors of spatial memory across saccades

Abstract

Our ability to interact with the world depends on memory buffers that flexibly store and process information for short periods of time. Current working memory research, however, mainly uses tasks that avoid eye movements, whereas in daily life we need to remember information across saccades. Because saccades disrupt perception and attention, the brain might use special transsaccadic memory systems. Therefore, to compare working memory systems between and across saccades, the current study devised transsaccadic memory tasks that evaluated the influence of memory load on several kinds of systematic and unsystematic spatial errors, and tested whether these measures predicted performance in more established working memory paradigms. Experiment 1 used a line intersection task that had people integrate lines shown before and after saccades, and it administered a 2-back task. Experiments 2 and 3 asked people to point at one of several locations within a memory array flashed before an eye movement, and we tested change detection and 2-back performance. We found that unsystematic transsaccadic errors increased with memory load and were correlated with 2-back performance. Systematic errors produced similar results, although effects varied as a function of the geometric layout of the memory arrays. Surprisingly, transsaccadic errors did not predict change detection performance despite the latter being a widely accepted measure of working memory capacity. Our results suggest that working memory systems between and across saccades share, in part, similar neural resources. Nevertheless, our data highlight the importance of investigating working memory across saccades.

Recruitment gain of spinal motor neuron pools in cat and human

Abstract

The output from a motor nucleus is determined by the synaptic input to the motor neurons and their intrinsic properties. Here, we explore whether the source of synaptic inputs to the motor neurons (cats) and the age or post-stroke conditions (humans) may change the recruitment gain of the motor neuron pool. In cats, the size of Ia EPSPs in triceps surae motor neurons (input) and monosynaptic reflexes (MSRs; output) was recorded in the soleus and medial gastrocnemius motor nerves following graded stimulation of dorsal roots. The MSR was plotted against the EPSP thereby obtaining a measure of the recruitment gain. Conditioning stimulation of sural and peroneal cutaneous afferents caused significant increase in the recruitment gain of the medial gastrocnemius, but not the soleus motor neuron pool. In humans, the discharge probability of individual soleus motor units (input) and soleus H-reflexes (output) was performed. With graded stimulation of the tibial nerve, the gain of the motor neuron pool was assessed as the slope of the relation between probability of firing and the reflex size. The gain in young subjects was higher than in elderly subjects. The gain in post-stroke survivors was higher than in age-matched neurologically intact subjects. These findings provide experimental evidence that recruitment gain of a motor neuron pool contributes to the regulation of movement at the final output stage from the spinal cord and should be considered when interpreting changes in reflex excitability in relation to movement or injuries of the nervous system.

Three-week treadmill training changes the electrophysiological properties of spinal interneurons in the mice

Abstract

It was shown in previous studies that endurance training enhanced excitability of rat spinal motoneurons. However, the influence of the training on the spinal interneurons remains unclear. In this study, we investigated the training effects on spinal interneurons in dorsal and ventromedial area in mice (P42–P50). The electrophysiological properties of the interneurons were recorded from spinal cord slices (T13-L6) by whole-cell patch-clamp recording. The interneurons could be classified into three types based on their response to step currents: single spike (type 1), phasic firing (type 2), and tonic firing (type 3) in both control and trained mice. Interneurons collected from control mice possessed rheobase of 11.3 ± 6.0 pA and voltage threshold (Vth) of − 37.3 ± 4.7 mV. Treadmill training reduced the rheobase by 4.8 ± 1.5 pA and Vth by 3.1 ± 1.2 mV (P < 0.05). Furthermore, the training effects were dependent on the distribution and types of the interneurons. Treadmill training hyperpolarized Vth and decreased rheobase in ventromedial interneurons, while the significant change was observed only in the action potation height of the interneurons in dorsal horn. Treadmill training also hyperpolarized Vth and increased input resistance in type 3 interneurons, but none of these changes was shown in type 1 and 2 interneurons. Bath application of 5-HT (10−20 μM) increased the neuronal excitability in both control and trained mice. Serotonin had similar effect on membrane properties of the interneurons collected from both groups. This study suggested that treadmill training increased excitability of spinal interneurons of the mice and thus would make the spinal motor system easier to generate locomotion.

Prefrontal cortex activity induced by periodontal afferent inputs downregulates occlusal force

Abstract

The prefrontal cortex (PFC) plays an important role in several cognitive functions, such as planning, decision making, and social behavior. We previously reported that periodontal sensory input significantly increases PFC activity during the motor task of maintaining occlusal (biting) force. However, the relationships between periodontal sensation, PFC activity, and the performance of motor tasks have not been evaluated in detail. Therefore, using functional near-infrared spectroscopy, we investigated PFC activity by monitoring changes in cerebral blood flow (CBF) to specific areas of the PFC that corresponded to changes in occlusal force generated during four different biting tasks: (1) occlusion with the central incisor with an interocclusal distance of 5 mm (BI-5 mm); or (2) 10 mm (BI-10 mm); (3) occlusion with the first molars with an interocclusal distance of 5 mm (BM-5 mm), or (4) 10 mm (BM-10 mm). Occlusion of molars generated increased PFC regional CBF as the interocclusal distance decreased (BM-10 mm vs BM-5 mm). No significant differences in CBF during occlusion of incisors were found when comparing 5 mm and 10 mm intercostal distances (BI-5 mm vs BI-10 mm). The mean occlusal force generated by BM-5 mm occlusion was significantly lower than that generated by BM-10 mm occlusion. Taken together, our results suggest that the PFC decreases efferent signaling to motor units, to reduce occlusal force generated when periodontal sensation, which is greater when the interocclusal distance is reduced, is primarily responsible for maintaining occlusal force in the absence of sensations from the temporomandibular joint and muscle spindles.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate