Translate

Κυριακή 6 Οκτωβρίου 2019

Automated applicator digitization for high-dose-rate cervix brachytherapy using image thresholding and density-based clustering

Automated applicator digitization for high-dose-rate cervix brachytherapy using image thresholding and density-based clustering:
elsevier-non-solus.png
Publication date: Available online 5 October 2019
Source: Brachytherapy
Author(s): Christopher L. Deufel, Shulan Tian, Benjamin B. Yan, Birjoo D. Vaishnav, Michael G. Haddock, Ivy A. Petersen
Abstract
Purpose
The purpose of the study was to develop and evaluate an automated digitization algorithm for high-dose-rate cervix brachytherapy, with the goal of reducing the duration of treatment planning, staff resources, variability, and potential for human error.
Methods
An automated digitization algorithm was developed and retrospectively evaluated using treatment planning data from 10 patients with cervix cancer who were treated with a titanium tandem and ovoids applicator set. Applicators were segmented, without human interaction, by thresholding CT images to isolate high-density voxels and assigning the voxels to applicator and nonapplicator structures using HDBSCAN, a density-based linkage clustering algorithm. The applicator contours were determined from the centroid of the clustered voxels on each image slice and written to a treatment plan file. Automated contours were evaluated against manual digitization using distance and dosimetric metrics.
Results
A close agreement between automatic and manual digitization was observed. The mean magnitude of contour disagreement for 10 patients equaled 0.3 mm. Hausdorff distances were ≤1.0 mm. The applicator tip coordinates had submillimeter agreement. The median and mean dose volume histogram parameter differences were less than or equal to 1% for high-risk clinical target volume D90, high-risk clinical target volume D95, bladder D2cc, rectum D2cc, large bowel D2cc, and small bowel D2cc. The average execution time for the automated algorithm was less than 30 s.
Conclusion
The digitization of titanium tandem and ovoids applicators for high-dose-rate brachytherapy treatment planning can be automated using straightforward thresholding and clustering algorithms. The adoption of automated digitization is expected to improve the consistency of treatment plans and reduce the duration of treatment planning.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate