Translate

Κυριακή 20 Οκτωβρίου 2019

Antitumor effect of a short peptide on p53-null SKOV3 ovarian cancer cells
imageFibroblast growth factor-2 (FGF2) is a protein ligand, which exerts essential roles in development, angiogenesis, and tumor progression via activation of the downstream signaling cascades. Accumulating evidence has demonstrated that FGF2 is involved in the progression of ovarian cancer, providing a novel potential target for ovarian cancer therapy. In this study, we showed that FGF2 is significantly increased in ovarian tumors, and is negatively associated with the overall survival of ovarian cancer by database analysis. A short peptide obtained from a heptapeptide phage display library suppressed FGF2-induced proliferation, migration, and invasion of the p53-null epithelial ovarian cancer (EOC) cells. Further investigations revealed that the short peptide antagonized the effects of FGF2 on G0/G1 to S cell phase promotion, cyclin D1 expression, and MAPK and Akt signaling activation, which might contribute to the mechanism underlying the inhibitory effects of the short peptide on the aggressive phenotype of the ovarian cancer cells triggered by FGF2. Moreover, the short peptide might have the potentials of reversing FGF2-induced resistance to the doxorubicin via downregulation of the antiapoptotic proteins and counteracting of the antiapoptotic effects of FGF2 on p53-null EOC cells. Taken together, the short peptide targeting FGF2 may provide a novel strategy for improving the therapeutic efficiency in a subset of EOC.
Sinomenine sensitizes human gastric cancer cells to cisplatin through negative regulation of PI3K/AKT/Wnt signaling pathway
imageSinomenine (SIN) has been reported its antitumor effects on various types of human cancers, but there is no available information regarding the antitumor effects of SIN and cisplatin on gastric cancer. Here, we examined the antitumor effects of SIN combined with cisplatin on gastric cancer cells as well as the underlying biological mechanisms. CCK-8 assay and Calcusyn 2.0 software analysis, Hoechst 33258 staining and flow cytometry, transwell assay showed that SIN and cisplatin synergistically inhibited growth, induced apoptosis, and suppressed invasion than did either drug alone in gastric cancer cells. Interestingly, no change in the AKT level was found, whereas SIN and cisplatin led to a dramatic decrease in p-AKT level compared with either alone treatment. SIN and cisplatin further decreased the Bcl-2, procaspase-3, and β-catenin, but increased Bax, cleaved dcaspase 3, MMP9, and MMP2 in combined group than in either alone group. Immunofluorescence staining showed again a significant decrease in nucleus β-catenin was found in combined group. These data suggested that SIN sensitizes human gastric cancer cells to cisplatin through negative regulation of PI3K/AKT/Wnt signaling pathway. In conclusion, SIN and cisplatin exerted synergistic antitumor effects in gastric cancer cells and might constitute a promising therapeutic approach for gastric cancer.
Synergistic anti-tumour effects of Clostridium butyricum in combination with apatinib in CT26 colorectal tumour-bearing mice
imageTo investigate the synergistic antitumour effect of Clostridium butyricum combined with apatinib on colorectal cancer in mice. Murine colorectal carcinoma cell line CT26.WT cells were xenografted into the skin of BALB/c mice. Tumour-bearing mice were randomly divided into four groups, and given different treatment options (PBS control; C. butyricum; apatinib; C. butyricum + apatinib). Real-time PCR was used to detect C. butyricum content in the intestine of mice given C. butyricum. The effects of various regimens on tumour growth were monitored, and CD31, proliferating cell nuclear antigen (PCNA), Bcl-2 and cleaved caspase-3 expressions in tumour were analysed by immunohistochemistry. C. butyricum combined with apatinib significantly inhibits tumour growth with decreased CD31, PCNA and Bcl-2 expressions, and increased cleaved caspase-3 expressions. Our study confirms that C. butyricum combined with apatinib in the treatment of xenografted colon tumour in mice can significantly inhibit tumour growth and promote cell apoptosis than apatinib alone treatments, providing the reference for clinical treatments.
Proanthocyanidins attenuate breast cancer-induced bone metastasis by inhibiting Irf-3/c-jun activation
imageWe have previously demonstrated the pivotal role of Jnk-mediated Irf-3/c-Jun in regulating nuclear factor kappa-Β ligand (RANKL)-induced osteoclastogenesis. Here, we demonstrated that proanthocyanidins (PACs) target Irf-3 to alleviate breast cancer-induced activation of osteoclasts. We also found that PACs induced apoptosis of osteoclast precursors by upregulating the ratio of bax/bcl-2 and activating caspase-3 activity. Such bone protective effect also could be observed in a bone metastasis model of breast cancer. These findings provided a novel therapeutic intervention targeting abnormal bone metabolism to alleviate bone metastasis of breast cancer.
Matrine enhances the efficacy of adriamycin chemotherapy in osteosarcoma cells by the STAT3 pathway
imageMatrine and adriamycin have been extensively considered to be effective in anticancer therapies. However, the role of matrine in the antitumor activity of adriamycin against human osteosarcoma (OS) remains elusive. The aim of this study was to investigate the effect of matrine in OS chemotherapy of adriamycin. In the study, we found that matrine promoted the inhibitory effect of adriamycin against OS cell proliferation and growth. Wound healing and transwell assays showed that the inhibitory effect of adriamycin against migration and invasion of OS cells was significantly enhanced by matrine. For the underlying mechanism investigation, we showed that adriamycin reduced the protein level of PCNA, MMP-9, phosphorylated STAT3, and survivin, which was further intensified by the application of matrine. These results show that matrine could promote the therapeutic efficacy of adriamycin against human OS.
LncRNA ANRIL promotes cell growth, migration and invasion of hepatocellular carcinoma cells via sponging miR-144
imageAntisense non-coding RNA in the INK4A locus (ANRIL) has been recognized as a cancer-related lncRNA in hepatocellular carcinoma previously. This study aimed to reveal the functional effects and mechanisms of ANRIL on hepatocellular carcinoma cells in vitro. The expression of ANRIL in hepatocellular carcinoma cell lines (MHCC97 and Li-7) and non-tumourigenic liver cell line THLE-3 was detected by qRT-PCR. The expression of ANRIL, miR-144 and PBX3 in hepatocellular carcinoma cells was altered simultaneously or respectively by vector/oligonucleotide transfection. Then, cell viability, migration, invasion, apoptotic cell rate, protein expression of apoptosis-related factors were assessed. The correlation between ANRIL, miR-144 and PBX3 was explored. ANRIL was highly expressed in MHCC97 and Li-7 cells when compared to THLE-3 cells. ANRIL overexpression promoted cell viability, migration, invasion and suppressed apoptosis of MHCC97 and Li-7 cells. ANRIL negatively regulated miR-144, and oncogenic effects of ANRIL were attenuated when miR-144 was overexpressed. PBX3 was a direct target of miR-144. miR-144 overexpression blocked PI3K/AKT and JAK/STAT signalling pathways via targeting PBX3. Our data documented that ANRIL promoted hepatocellular carcinoma cells growth, migration and invasion. One of the possible mechanisms responsible for the tumour-promoting actions is that ANRIL sponging miR-144 to derepress PBX3.
Osthole inhibits the progression of human gallbladder cancer cells through JAK/STAT3 signal pathway both in vitro and in vivo
imageOsthole is an antitumor compound, which effect on Gallbladder cancer (GBC) has been not elucidated. This study focused on its anti-GBC effect and mechanism both in vitro and in vivo. The antiproliferation effect on cell lines NOZ and SGC-996 were measured by cell counting kit-8 (CCK-8) and colony formation assay. The effects on cell apoptosis and cell cycle were investigated by flow cytometry assay. The migration effect was checked by transwell assay and the expressions of proteins were examined by Western Blots. Also, we did an in-vivo experiment by intraperitoneal injection of osthole in nude mice. The results showed that cell proliferation and viability were inhibited in a dose- and time-dependent manner. The similar phenomenon was also found in vivo. Flow cytometric assay confirmed that osthole inhibited cells proliferation via inducing apoptosis and G2/M arrest. Transwell assay indicated that osthole inhibited the migration in a dose-dependent manner. Expression of key proteins related with apoptosis and cell cycle were testified after osthole treatment. Also, we found the key proteins involved in the JAK/STAT3 signal way decreased after osthole treatment. This study suggested that osthole can inhibit the progression of human GBC cell lines, thus maybe a potential drug for GBC treatment.
The signaling axis of Rac1-TFEB regulates autophagy and tumorigenesis
imageMacroautophagy (hereafter referred to as autophagy) plays essential roles in cellular and organismal homeostasis. Transcription factor EB (TFEB) is a master regulator of autophagy and lysosome biogenesis. It is not fully understood how the function of TFEB in autophagy pathway is regulated. Here, we show that Rac1 GTPase is a negative modulator of autophagy by targeting TFEB. Mechanistically, Rac1 reduces autophagy flux by repressing the expressing of autophagy genes. Further investigation revealed that under nutrient-rich conditions, mammalian target of rapamycin (mTOR) phosphorylates TFEB to facilitate the interaction between Rac1 and TFEB. Biochemical dissection uncovered that guanosine 5′-triphosphate (GTP)-bound form of Rac1 selectively interacts with phosphorylated TFEB. This inhibitory interaction prevents the dephosphorylation and nucleus translocation of TFEB, which hampers the transcriptional activation of autophagy-related genes. Furthermore, Rac1-TFEB axis appeared to be important for tumorigenesis, as overexpression of dephosphorylated mutant of TFEB was able to delay the tumor growth driven by Rac1 overexpression. Together, this study not only elucidates a previously uncharacterized autophagy regulation mechanism involving Rac1 and TFEB under physiological and pathological conditions but also suggests a strategy to treat cancers that are driven by Rac1 overexpression.
An autophagy-dependent cell death of MDA-MB-231 cells triggered by a novel Rhein derivative 4F
imageTriple negative breast cancer (TNBC) has very poor prognosis and no efficacious therapeutic options due to the absence of a validated molecular target. Therefore, novel therapeutic strategies against TNBC are urgently needed. Our team synthesized and screened a series of compounds derived from Rhein, of which 4F was selected for further analysis based on its ability to produce the vacuolated appearance of cells. Using Cell counting kit-8 assay, colony-formation assay, cell apoptosis and cell cycle assay, we compared the antitumor effects of 4F, Rhein and Cisplatin on a TNBC cell line MDA-MB-231 in vitro. The vacuoles in MDA-MB-231 cells were observed and analyzed by hematoxylin–eosin staining and transmission electron microscopy. Autophagy and apoptosis-related proteins including p62, Microtubule Light Chain 3 (LC3), Beclin-1 and Caspase-3 were determined by western blot. The tandem mRFP-GFP-LC3 Lentivirus was used for monitoring the maturation step of autophagosomes. Our data revealed that 4F had lower cytotoxicity to normal breast cell line MCF-10A as compared with positive drug Doxorubicin. Although 4F had better cytotoxicity than Rhein, it had no influence on cells apoptosis in 4F-treated cells. Accumulation of autolysosomes and autophagosomes was observed in 4F-treated MDA-MB-231 cells, accompanied by increased level of Beclin-1 protein. Enhanced autophagic flux was verified by higher ratio of LC3-II/LC3-I, the degradation of p62 protein and alteration in red and green fluorescence puncta. These findings suggested that the process of MDA-MB-231 cell death induced by 4F seemed rely mainly on autophagy rather than apoptosis. 4F may be an alternative drug candidate against TNBC and merits more exploration.
Efficacy of gefitinib at reduced dose in EGFR mutant non-small cell lung carcinoma
imageAs a first-generation epidermal growth factor receptor-tyrosine kinase inhibitor, gefitinib was approved by the US Food and Drug Administration for treatment of advanced non-small cell carcinoma with sensitizing EGFR mutations. Gefitinib is known to have adverse effects, which may necessitate dose reduction or even change to alternative preparation of epidermal growth factor receptor-tyrosine kinase inhibitor. There has been concern on dose reduction resulting in reduced dose gefitinib, especially on its efficacy. This was a retrospective single-center cohort study conducted in Queen Mary Hospital in Hong Kong that included 159 Chinese patients with advanced adenocarcinoma of lung that carried sensitizing EGFR mutations and had received gefitinib as first-line treatment. Patients who had reduced dose at 250 mg alternate day were compared with those who were able to maintain on standard dose of gefitinib at 250 mg daily. The primary end-point was progression-free survival. Among the 159 patients, 17 (10.7 %) of them were on reduced dose gefitinib, 14 among the 17 patients (82.4%) because of hepatotoxicity, and 3 (17.6%) because of cutaneous side effects. Patients on reduced dose and standard dose of gefitinib have comparable median progression-free survival. Hazard ratio was 1.121 (95% confidence interval = 0. 655–1.917, P-value = 0.678) for the reduced dose group and 3.385 for the standard dose group (95% confidence interval = 2.181–5.255) respectively (P-value < 0.001). Dose reduction in gefitinib to 250 mg alternate day in response to adverse effects was not associated with inferior outcome for patients on first-line gefitinib for advanced non-small cell carcinoma. Dose reduction is a feasible option for patients who have significant adverse effects with gefitinib.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate