Translate

Δευτέρα 5 Αυγούστου 2019

The State of Resting State Networks
imageFunctional MRI (fMRI) is currently used for pre-surgical planning, but is often limited to information on the motor and language systems. Resting state fMRI can provide more information on multiple other networks to the neurosurgeon and neuroradiologist; however, currently, these networks are not well known among clinicians. The purpose of this manuscript is to provide an introduction to these networks for the clinician and to discuss how they could be used in the future for precise and individualized surgical planning. We provide a short introduction to resting state fMRI and discuss multiple currently accepted resting state networks with a review of the literature. We review the characteristics and function of multiple somatosensory, association, and other networks. We discuss the concept of critical nodes in the brain and how the neurosurgeon can use this information to individually customize patient care. Although further research is necessary, future application of pre-surgical planning will require consideration of networks other than just motor and language in order to minimize post-surgical morbidity and customize patient care.
Pediatric Presurgical Functional MRI
imageFunctional MRI is a reliable, noninvasive technique which allows spatial mapping of the various functions like sensorimotor, language and vision in the brain. This is of immense help to the neurosurgeon in presurgical planning and intraoperative navigation in order to identify and preserve eloquent areas of the brain and minimize post-surgical neurological deficits. Using this technique in children pose unique challenges. This article discusses some of these challenges and how they can be overcome in successful application of this technique in pediatric patients.
Fundamentals of Preoperative Task Functional Brain Mapping
imageBlood oxygenation level–dependent (BOLD) imaging is gaining traction in the clinical realm as a measure for quantifying changes in regional blood flow in response to external stimuli. Through the evoked signal changes that are a consequence of hemoglobin's intrinsic paramagnetic properties, this technique allows for the statistical mapping of brain regions associated with a given task, which has broad applications in preneurosurgical planning for tumor resection. From an acquisition perspective, collection of BOLD data most commonly requires the use of echo planar imaging readout schemes. These sequences are currently widely available on most clinical scanners and at various field strengths. However, while the BOLD acquisition protocol is relatively straightforward, additional hardware and rigorous image processing are needed to correlate the time-dependent signal changes associated with a specific and well defined task. This manuscript will provide the necessary information to detail the physiologic underpinning of acquiring BOLD sensitized images and the important technical aspects of processing the data for use in a surgical environment.
Neuroanatomical Considerations in Preoperative Functional Brain Mapping
imageTask-based functional magnetic resonance imaging (fMRI) for the presurgical assessment of eloquent cortex is increasingly relied upon by surgeons, neurologists, and radiologists. The utility of fMRI stems from the lack of correlation between topographic anatomy and functional anatomy. fMRI can noninvasively reveal the functional anatomy of a given individual thereby allowing the surgeon to choose the most appropriate surgical trajectory, attain the most complete resection, and offer the best chance of preserving function. This dissociation between function and topography is even more critical to understand when disease distorts normal anatomic relations and when chronic evolution of pathology leads to reorganization of cortical function as can be seen with seizures or slow growing tumors. fMRI can demonstrate the functional anatomy of language, motor, vision, and memory systems. Accurate interpretation not only requires knowledge of the expected patterns of activations in the regions of interest but also demands an understanding of the many adjacent “bystander” activations that represent participatory neural activity but not the eloquent region in question. In addition, fMRI interpretation requires an understanding of the limitations of this technique when expected activity is either missing or seemingly displaced in location.
Language Mapping With fMRI: Current Standards and Reproducibility
imageClinical use of blood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is a relatively new phenomenon, with only about 3 decades of collective experience. Nevertheless, task-based BOLD fMRI has been widely accepted for presurgical planning, over traditional methods, which are invasive and at times perilous. Many studies have demonstrated the ability of BOLD fMRI to make substantial clinical impact with respect to surgical planning and preoperative risk assessment, especially to localize the eloquent motor and visual areas. Reproducibility and repeatability of language fMRI are important in the assessment of its clinical usefulness. There are national efforts currently underway to standardize language fMRI. The American Society of Functional Neuroradiology (ASFNR) has recently provided guidelines on fMRI paradigm algorithms for presurgical language assessment for language lateralization and localization. In this review article, we provide a comprehensive overview of current standards of language fMRI mapping and its reproducibility.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate