Nanofiber-Reinforced Decellularized Amniotic Membrane Improves Limbal Stem Cell Transplantation in a Rabbit Model of Corneal Epithelial Defect Publication date: Available online 19 August 2019 Source: Acta Biomaterialia Author(s): Zhengbing Zhou, Da Long, Chih-Chien Hsu, Huanhuan Liu, Long Chen, Benjamin Slavin, Hui Lin, Xiaowei Li, Juyu Tang, Samuel Yiu, Sami Tuffaha, Hai-Quan Mao Abstract
Human amniotic membrane (AM) offers unique advantages as a matrix to support the transplantation of limbal stem cells (LSCs) due to its inherent pro-regenerative and anti-inflammatory properties. However, the widespread use of AM in clinical treatments of ocular surface disorders is limited by its weak mechanical strength and fast degradation, and high cost associated with preserving freshly isolated AM. Here we constructed a composite membrane consisting of an electrospun bioabsorbable poly(ε-caprolactone) (PCL) nanofiber mesh to significantly improve the ultimate tensile strength, toughness, and suture retention strength by 4 to 10-fold in comparison with decellularized AM sheet. The composite membrane showed extended stability and conferred longer-lasting coverage on wounded cornea surface compared with dAM. The composite membrane maintained the pro-regenerative and immunomodulatory properties of dAM, promoted LSC survival, retention, and organization, improved re-epithelialization of the defect area, and reduced inflammation and neovascularization. This study demonstrates the translational potential of our composite membrane for stem cell-based treatment of ocular surface damage.
Statement of Signifcance Human decellularized amniotic membrane (dAM) has been widely shown as a biodegradable and bioactive matrix for regenerative tissue repair. However, the weak mechanical property has limited its widespread use in the clinic. Here we constructed a composite membrane using a layer of electrospun poly(ε-caprolactone) (PCL) nanofiber mesh to reinforce the dAM sheet through covalent interfacial bonding, while retaining the unique bioactivity of dAM. In a rabbit model of limbal stem cell (LSC) deficiency induced by alkaline burn, we demonstrated the superior property of this PCL-dAM composite membrane for repairing damaged cornea through promoting LSC transplantation, improving re-epithelialization, and reducing inflammation and neovascularization. This new composite membrane offers great translational potential in supporting stem cell-based treatment of ocular surface damage. Graphical abstract |
Enhanced Photoconversion Performance of NdVO4/Au Nanocrystals for Photothermal/Photoacoustic Imaging Guided and Near Infrared Light-Triggered Anticancer Phototherapy Publication date: Available online 19 August 2019 Source: Acta Biomaterialia Author(s): Mengyu Chang, Meifang Wang, Mengmeng Shu, Yajie Zhao, Binbin Ding, Shanshan Huang, Zhiyao Hou, Gang Han, Jun Lin Abstract
Although neodymium vanadate (NdVO4) has been investigated and applied in some fields owing to its intensive ultraviolet (UV) light absorption, weak absorption in visible (Vis) and near infrared (NIR) regions constrains its environmental remediation and biomedical applications. Herein, plasmonic precious metal Au as light trapping agent is deposited onto NdVO4 to form metal/semiconductor hybrid nanostructure for improving the Vis/NIR light absorption. NdVO4/Au heterojunction nanocrystals (NCs) were synthesized by NdVO4 nanorods (NRs) and plasmonic Au nanoparticles (NPs), followed by introducing polyvinylpyrrolidone (PVP) to enhance stability and biocompatibility, which exhibit elevated photocatalytic performance for organic dye degradation, photothermal conversion effect as high as 32.15% and cytotoxic reactive oxygen species (ROS) production ability. NdVO4/Au can be internalized efficiently via endocytosis and cause apparent phototoxicity on HeLa cells. In vivo experiments further show that NdVO4/Au can act as a high-efficiency NIR light-triggered anticancer agent with excellent tumor inhibition effect. In addition, based on outstanding light-to-heat conversion performance and thermal expansion effect under NIR irradiation, NdVO4/Au provides photothermal (PT) and photoacoustic (PA) dual-modal imaging platform for precise cancer diagnosis and treatment.
Statements of significanceIt’s the first report on integrating precious metal Au and rare earth orthovanadates semiconductor into NdVO4/Au heterojunction NCs. The as-prepared NdVO4/Au heterojunction NCs exhibits improved absorption in Vis/NIR region and increased generation efficiency of photo-induced electron/hole pairs due to the LSPR effect, which results in enhanced photothermal conversion efficiency and the production ability of cytotoxic ·O2- and ·OH in comparison with pristine NdVO4. For further clinical application, NdVO4/Au heterojunction NCs could be served as anticancer therapeutic agent for PA/PT dual-modal imaging guided and NIR-triggered photothermal/photodynamic synergistic anticancer treatment.Graphical abstract |
A tissue-specific, injectable acellular gel for the treatment of chronic vocal fold scarring Publication date: Available online 16 August 2019 Source: Acta Biomaterialia Author(s): Chet C. Xu, Ted Mau Abstract
Gel-based injectable biomaterials have significant potential for treating vocal fold defects such as scarring. An ideal injectable for vocal fold lamina propria restoration should mimic the microenvironment of the lamina propria to induce scarless wound healing and functional tissue regeneration. Most current synthetic or natural injectable biomaterials do not possess the same level of complex, tissue-specific constituents as the natural vocal fold lamina propria. In this study we present a newly-developed injectable gel fabricated from decellularized bovine vocal fold lamina propria. Blyscan assay and mass spectrometry indicated that the vocal fold-specific gel contained a large amount of sulfated glycosaminoglycans and over 250 proteins. Gene Ontology overrepresentation analysis revealed that the proteins in the gel dominantly promote antifibrotic biological process. In vivo study using a rabbit vocal fold injury model showed that the injectable gel significantly reduced collagen density and decreased tissue contraction of the lamina propria in vocal folds with chronic scarring. Furthermore, this acellular gel only elicited minimal humoral immune response after injection. Our findings suggested that the tissue-specific, injectable extracellular matrix gel could be a promising biomaterial for treating vocal fold scarring, even after the formation of mature scar.
Statement of SignificanceVocal fold lamina propria scarring remains among the foremost therapeutic challenges in the management of patients with voice disorders. Surgical excision of scar may cause secondary scarring and yield inconsistent results. The present study reports an extracellular matrix-derived biomaterial that demonstrated antifibrotic effect on chronic scarring in vocal fold lamina propria. Its injectability minimizes the invasiveness of the delivery procedure and the degree of mucosal violation. In this work we also describe a new methodology which can more accurately identify complex protein mixture in an acellular extracellular matrix gel by excluding interfering peptides produced during the enzymatic digestion in gel fabrication.Graphical abstract |
Cryogel scaffolds for regionally constrained delivery of lysophosphatidylcholine to central nervous system slice cultures: a model of focal demyelination for multiple sclerosis research Publication date: Available online 16 August 2019 Source: Acta Biomaterialia Author(s): Dimitri Eigel, Lida Zoupi, Sowmya Sekizar, Petra B. Welzel, Carsten Werner, Anna Williams, Ben Newland Abstract
The pathology of multiple sclerosis (MS) is typified by focal demyelinated areas of the brain and spinal cord, which results in axonal degeneration and atrophy. Although the field has made much progress in developing immunomodulatory therapies to reduce the occurrence of these focal lesions, there is a conspicuous lack of licensed effective therapies to reduce axonal degeneration or promote repair. Remyelination, carried out by oligodendrocytes, does occur in MS, and is protective against axonal degeneration. Unfortunately, remyelination is not very efficient, and ultimately fails and so there is a research focus to generate new therapeutics to enhance remyelination leading to neuroprotection.
To develop these therapies, we need preclinical models that well reflect remyelination in MS. We have previously characterized an ex vivo model that uses lysophosphatidylcholine (LPC) to cause acute and global demyelination of tissue slices, followed by spontaneous remyelination, which has been widely used as a surrogate for in vivo rodent models of demyelination. However, this ex vivo model lacks the focal demyelinated lesions seen in MS, surrounded by normal tissue from which the repairing oligodendrocytes are derived. Therefore, to improve the model, we have developed and characterized small macroporous cryogel scaffolds for controlled/regional delivery of LPC with diameters of either 0.5, 1 or 2 mm. Placement of LPC loaded scaffolds adjacent to ex vivo cultured mouse brain and spinal cord slices induced focal areas of demyelination in proximity to the scaffold. To the best of our knowledge, this is the first such report of spatial mimicry of the in vivo condition in ex vivo tissue culture. This will allow not only the investigation into focal lesions, but also provides a better platform technology with which to test remyelination-promoting therapeutics. Statement of significance:This manuscript is the first report of using macroporous hydrogels (cryogels) as a research tool for lysophosphatidylcholine (LPC) delivery, in order to create an ex-vivo model of focal demyelination in the brain and spinal cord, which is of great relevance to multiple sclerosis research.Here, we transform an existing ex vivo model of demyelination by delivering LPC to focal regions of brain and spinal cord slice cultures. We have developed an easy-to-handle cylindrical and macroporous PEG-based sponge-like scaffold material (cryogel) that can deliver LPC only to a small area of the slice. Such cryogels are ideal as a delivery system in this culture model as they exhibit a soft but robust nature, with high mechanical deformability in their dry and swollen state, with no need to stay permanently hydrated. In addition, the synthesis of these cryogels is simple and easy to reproduce via photochemical cryopolymerisation using a PEG-diacrylate monomer and a photoinitiator, which are both commercially available. This more accurate model of demyelination will not only allow researchers to gain a better understanding of the CNS remyelination process in diseases such as MS, but also provides a platform technology, which could be utilized to screen and test pro-remyelination compounds which may help to find new therapeutics for progressive MS. Graphical abstract |
Atomic level observation and structural analysis of phosphoric-acid ester interaction at dentin Publication date: Available online 16 August 2019 Source: Acta Biomaterialia Author(s): Kumiko Yoshihara, Noriyuki Nagaoka, Yasuhiro Yoshida, Bart Van Meerbeek, Satoshi Hayakawa Abstract
The functional monomer 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), used in many dental adhesives, self-assembles in nano-layers at adhesive-tooth interfaces. Recently, several states of the P-OH groups of 10-MDP_Ca salts were suggested, while their actual status has not been elucidated yet. We mechanistically investigated 10-MDP_Ca-salt nano-layering at adhesive-dentin interfaces, correlatively using scanning transmission electron microscopy with energy-dispersive X-ray spectrometry (STEM-EDS), X-ray diffraction (XRD) and solid state nuclear magnetic resonance (NMR). STEM-EDS confirmed the presence of Ca and P in each nano-layer. Both XRD and NMR revealed that the two terminal P-OH groups of 10-MDP reacted with Ca. This twofold P-OH interaction of 10-MDP with Ca was stable in water and is therefore expected to contribute to durable nano-layering of 10-MDP_Ca salts in the hybrid and adhesive layer.
Statement of significanceThe functional monomer 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP), commonly used in dental adhesives with favorable long-term clinical outcome, has been documented to self-assemble into nano-layers at adhesive-tooth interfaces. Characterizing ultra-morphologically (STEM) and chemically (STEM-EDS, XRD, NMR) the mechanisms of interaction of 10-MDP with bulk dentin in a similar manner as what occurs clinically, it was found that the water stable 10-MDP_Ca salts consist of CaRPO4, meaning that the two -OH groups of the phosphate group of 10-MDP ionically reacted with Ca. This stable structure is expected to contribute to durable nano-layering of 10-MDP_Ca salts in the hybrid and adhesive layer and hence to clinical longevity of the adhesively bonded tooth restoration.Graphical abstract |
Lab on a Tip: Applications of Functional Atomic Force Microscopy for the Study of Electrical Properties in Biology Publication date: Available online 16 August 2019 Source: Acta Biomaterialia Author(s): Ling-Zhi Cheong, Weidong Zhao, Shuang Song, Cai Shen Abstract
Electrical properties, such as charge propagation, dielectrics, surface potentials, conductivity, and piezoelectricity, play crucial roles in biomolecules, biomembranes, cells, tissues, and other biological samples. However, characterizing these electrical properties in delicate biosamples is challenging. Atomic Force Microscopy (AFM), the so called “Lab on a Tip” is a powerful and multifunctional approach to quantitatively study the electrical properties of biological samples at the nanometer level. Herein, the principles, theories, and achievements of various modes of AFM in this area have been reviewed and summarized.
Statement of significanceElectrical properties such as dielectric and piezoelectric forces, charge propagation behaviors play important structural and functional roles in biosystems from the single molecule level, to cells and tissues. Atomic force microscopy (AFM) has emerged as an ideal toolkit to study electrical property of biology. Herein, the basic principles of AFM are described. We then discuss the multiple modes of AFM to study the electrical properties of biological samples, including Electrostatic Force Microscopy (EFM), Kelvin Probe Force Microscopy (KPFM), Conductive Atomic Force Microscopy (CAFM), Piezoresponse Force Microscopy (PFM) and Scanning ElectroChemical Microscopy (SECM). Finally, the outlook, prospects, and challenges of the various AFM modes when studying the electrical behaviour of the samples are discussed.Graphical abstract |
Development of a cell-free and growth factor-free hydrogel capable of inducing angiogenesis and innervation after subcutaneous implantation Publication date: Available online 16 August 2019 Source: Acta Biomaterialia Author(s): Bruno Paiva dos Santos, Bertrand Garbay, Mathilde Fenelon, Marie Rosselin, Elisabeth Garanger, Sébastien Lecommandoux, Hugo de Oliveira, Joëlle Amédée Abstract
Despite significant progress in the field of biomaterials for bone repair, the lack of attention to the vascular and nervous networks within bone implants could be one of the main reasons for the delayed or impaired recovery of bone defects. The design of innovative biomaterials should improve the host capacity of healing to restore a functional tissue, taking into account that the nerve systems closely interact with blood vessels in the bone tissue. The aim of this work is to develop a cell-free and growth factor-free hydrogel capable to promote angiogenesis and innervation. To this end, we have used elastin-like polypeptides (ELPs), poly(ethylene glycol) (PEG) and increasing concentrations of the adhesion peptide IKVAV (25 % (w/w) representing 1.7 mM and 50 % (w/w) representing 4.1 mM) to formulate and produce hydrogels. When characterized in vitro, hydrogels have fine-tunable rheological properties, microporous structure and are biocompatible. At the biological level, 50 % IKVAV composition up-regulated Runx2, Osx, Spp1, Vegfa and Bmp2 in mesenchymal stromal cells and Tek in endothelial cells, and sustained the formation of long neurites in sensory neurons. When implanted subcutaneously in mice, hydrogels induced no signals of major inflammation and the 50 % IKVAV composition induced higher vessel density and formation of nervous terminations in the peripheral tissue. This novel composite has important features for tissue engineering, showing higher osteogenic, angiogenic and innervation potential in vitro, being not inflammatory in vivo, and inducing angiogenesis and innervation subcutaneously.
Statement of significanceOne of the main limitations in the field of tissue engineering remains the sufficient vascularization and innervation during tissue repair. In this scope, the development of advanced biomaterials that can support these processes is of crucial importance. Here, we formulated different compositions of Elastin-like polypeptide-based hydrogels bearing the IKVAV adhesion sequence. These compositions showed controlled mechanical properties, and were degradable in vitro. Additionally, we could identify in vitro a composition capable to promote neurite formation and to modulate endothelial and mesenchymal stromal cells gene expression, in view of angiogenesis and osteogenesis, respectively. When tested in vivo, it showed no signs of major inflammation and induced the formation of a highly vascularized and innervated neotissue. In this sense, our approach represents a potential advance in the development of new strategies to promote tissue regeneration, taking into account both angiogenesis and innervation.Graphical abstract |
Proteoglycan Removal by Chondroitinase ABC Improves Injectable Collagen Gel Adhesion to Annulus Fibrosus Publication date: Available online 16 August 2019 Source: Acta Biomaterialia Author(s): Emily Y. Jiang, Stephen R. Sloan, Christoph Wipplinger, Sertaç Kirnaz, Roger Härtl, Lawrence J. Bonassar Abstract
Intervertebral disc (IVD) herniations are currently treated with interventions that leave the IVD with persistent lesions prone to further herniations. Annulus fibrosus (AF) repair has become of interest as a method to seal defects in the IVD and prevent reherniation, but this requires strong adhesion of the implanted biomaterial to the native AF tissue. Our group has previously developed a high-density collagen (HDC) gel for AF repair and tested its efficacy in vivo, but its adhesion to the AF could be improved. Increased cell adhesion to cartilage has previously been reported through chondroitinase ABC (ChABC) digestion, which removes proteoglycans and increases access to cell binding motifs. Such approaches could also increase biomaterial adhesion to tissue, but the effects of ChABC digestion on AF have yet to be investigated. In this study, ovine AF tissue was digested with either 10 U/mL ChABC or saline for up to 10 minutes and the effect of this treatment on collagen adhesion between AF tissue samples was investigated by histology and mechanical testing in a lap-shear configuration. ChABC digestion removed proteoglycans within the AF in a time-dependent fashion and enhanced adhesion of the HDC gel to the AF. ChABC digestion increased the elastic toughness and total shear energy of the HDC gel-AF interface by 88% and 46% respectively. ChABC treatment enhanced the adhesion of the HDC gel to the AF without significantly decreasing native AF cell viability. Thus, ChABC digestion is a viable method to improve adhesion of biomaterials for AF repair.
Statement of SignificanceIntervertebral disc herniations are currently treated with interventions that leave persistent lesions in the annulus fibrosus that are prone to further herniations. Annular repair is a promising method to seal lesions and prevent reherniation, but requires strong adhesion of the implanted biomaterial to native annulus fibrosus. Since large proteoglycans like aggrecan occupy regions of the extracellular matrix between collagen fibers in the annulus fibrosus, we hypothesized that removing proteoglycans via chondroitinase digestion would increase the adhesion of annular repair hydrogels. This investigation demonstrated that chondroitinase removed proteoglycans within annulus fibrosus tissue, enhanced the interaction of an injected collagen gel with the native tissue, and mechanically improved adhesion between the collagen gel and annulus fibrosus. This is the first study of its kind to evaluate the biochemical and mechanical effects of short-term chondroitinase digestion on annulus fibrosus tissue.Graphical abstract |
Regulation of chitosan-mediated differentiation of human olfactory receptor neurons by insulin-like growth factor binding protein-2 Publication date: Available online 14 August 2019 Source: Acta Biomaterialia Author(s): Tsung-Wei Huang, Sheng-Tien Li, Yu-Hsin Wang, Tai-Horng Young Abstract
Olfaction is normally taken for granted in our lives, not only assisting us to escape from dangers, but also increasing our quality of life. Although olfactory neuroepithelium (ON) can reconstitute its olfactory receptor neurons (ORNs) after injury, no adequate treatment for olfactory loss has yet emerged. The present study investigates the role of glycosaminoglycans (GAGs) in modulating olfactory neuronal homeostasis and elucidates the regulatory mechanism. This work isolates and cultures human olfactory neuroepithelial cells (HONCs) with various GAGs for 7 days, and find that chitosan promotes ORN maturation, expressing olfactory marker protein (OMP) and its functional components. Growth factor protein array, ELISA and western blot analysis reveal that insulin-like growth factor binding protein 2 (IGFBP2) shows a higher level in chitosan-treated HONCs than in controls. Biological activity of insulin-like growth factor-1 (IGF-1), IGF-2 and IGF-1 receptor (IGF1R) is further investigated. Experimental results indicate that IGF-1 and IGF-2 enhance the growth of immature ORNs, expressing βIII tubulin, but decrease mature ORNs. Instead, down-regulation of phosphorylated IGF1R lifts the OMP expression, and lowers the βIII tubulin expression, by incubation with the phosphorylated inhibitor of IGF1R, OSI-906. Finally, the effect of chitosan on ORN maturity is antagonized by concurrently adding IGFBP2 protease, matrix metallopeptidase-1. Overall, our data demonstrate that chitosan promotes ORN differentiation by raising the level of IGFBP2 to sequestrate the IGFs-IGF1R signaling.
Statement of significanceOlfactory dysfunction serves as a crucial alarm in neurodegenerative diseases, and one of its causes is lacking of sufficient mature olfactory receptor neurons to detect odorants in the air. However, the clinical treatment for olfactory dysfunction is still controversial. Chitosan is the natural linear polysaccharide and exists in rat olfactory neuroepithelium. Previously, chitosan has been demonstrated to mediate the differentiation of olfactory receptor neurons in an in vitro rat model, but the mechanism is unknown. The study aims to evaluate the role and mechanism of chitosan in an in vitro human olfactory neurons model. Overall, these results reveal that chitosan is a potential agent for treating olfactory disorder by the maintenance of olfactory neural homeostasis. This is the first report to demonstrate that chitosan promotes differentiation of olfactory receptor neurons through increasing IGFBP2 to sequestrate the IGFs-IGF1R.Graphical abstract |
Black TiO2 nanotubes: Efficient electrodes for triggering electric field-induced stimulation of stem cell growth Publication date: Available online 13 August 2019 Source: Acta Biomaterialia Author(s): A. Mazare, J. Park, S. Simons, S. Mohajernia, I. Hwang, J.E. Yoo, H. Schneider, M.J. Fischer, P. Schmuki Abstract
TiO2 nanostructures represent a key platform for biomedical applications, due to the combination of biocompatibility and high surface area. Especially TiO2 nanotube layers have been widely investigated due to controllable nanotopographic effects as well as for electrodes in electrostimulation experiments. In the present work we produce Ar/H2-reduced ’black’ TiO2 nanotube arrays with a strongly enhanced electrical conductivity and explore their interaction with mesenchymal stem cells when used as electrodes to apply electric fields (EF) across the cells. While we observe no significant change in cell adhesion and their focal contact formation on these high conductivity nanotubes, we do observe a rapid stem cell response when EF is engaged using the ‘black’ TiO2nanotube arrays as electrodes. Compared to as-formed nanotube arrays, a faster stem cell growth was observed and a lower EF intensity caused an intracellular calcium level elevation. Our results indicate that the increased conductivity in TiO2 nanotubes significantly enhances the early stem cell response to minimal electric field stimuli.
Statement of SignificanceThe use of TiO2 nanostructures in biomedical applications is widely investigated, especially considering the nanostructured surface influence on the biomaterial-cell interactions. We have previously shown that an applied electric field (EF) on stem cells grown on TiO2 nanotubes leads to synergistic osteogenic stimulation in the absence of biochemical bone-inducing supplements. Here we report that black (i.e. highly conductive nanotubes obtained by reduction treatments) TiO2 nanotubes enable short-time EF effects on stem cells: we observe a faster stem cell growth and a significantly enhanced early stem cell response to minimal EF stimuli.The application of such nanostructures under electric field is promising for therapeutic interventions for bone regeneration and tissue engineering approaches.Graphical abstract |
ΩτοΡινοΛαρυγγολόγος Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,
Translate
Ετικέτες
Πέμπτη 22 Αυγούστου 2019
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
10:21 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Αρχειοθήκη ιστολογίου
-
►
2023
(278)
- ► Φεβρουαρίου (139)
- ► Ιανουαρίου (139)
-
►
2022
(1962)
- ► Δεκεμβρίου (107)
- ► Σεπτεμβρίου (158)
- ► Φεβρουαρίου (165)
- ► Ιανουαρίου (163)
-
►
2021
(3614)
- ► Δεκεμβρίου (152)
- ► Σεπτεμβρίου (271)
- ► Φεβρουαρίου (64)
- ► Ιανουαρίου (357)
-
►
2020
(3279)
- ► Δεκεμβρίου (396)
- ► Σεπτεμβρίου (157)
- ► Φεβρουαρίου (382)
- ► Ιανουαρίου (84)
-
▼
2019
(11718)
- ► Δεκεμβρίου (265)
- ► Σεπτεμβρίου (545)
-
▼
Αυγούστου
(750)
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Inflammation
- Radiology
- Programmed chromosome fission and fusion enab...
- Distinct immunology of the placenta
- Topography of the central retinal artery rele...
- No ‘gay gene’: Massive study homes in on gen...
- American Journal of Primatology
- Dermatological and Epidemiological Profiles ...
- Reply to Dr. Suga and Dr. Takenoshita Abstr...
- Με αυτό τον τρόπο το παιδί δεν θα εκδηλώσει ...
- Legends of Allergy and Immunology: Donald Y....
- The use of aggregation-induced emission prob...
- Αυτό το παυσίπονο αυξάνει τον κίνδυνο υπογλυ...
- VASCULARITY TARGETED PERCUTANEOUS ETHANOL IN...
- Leucine depletion extends the lifespans of l...
- Trends in Mortality From Human Immunodeficien...
- Associations between cerebrovascular risk fa...
- Stem Cells in the Treatment of Disease New E...
- Head and Neck
- British Journal of Oral and Maxillofacial Sur...
- Cancer Science
- Clinical Anatomy
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Nanomaterials, Vol. 9, Pages 1218: Fabrica...
- Medicina, Vol. 55, Pages 547: Total Serum ...
- International Journal of Environmental Resear...
- Arts, Vol. 8, Pages 111: The Persistence o...
- Arbuscular mycorrhiza and plant chromium toleran...
- Adenine decreases hypertrophic effects through i...
- Degradation of 17α-ethinylestradiol by Enterobac...
- Special issue on Intelligence Computation Evolut...
- A nonlinear state marginal price vector model fo...
- What's new in academic International medicine? T...
- Mādhyamikas Playing Bad Hands: The Case of Custo...
- Microporous scaffolds support assembly and diffe...
- The Gender Gap in Globalization and Well-Being A...
- Evaluation of a trap-and-transport program for a...
- Proceedings of the Royal Society B, Vol. 286, ...
- Nuclear Medicine and Molecular Imaging, FDG PET...
- Experimental DermatologyVolume 28, Issue 9Pages:...
- Understanding Connection Between Poverty, Child...
- Surveillance efficiency evaluation of air qualit...
- Opioid Prescribing Can Be Reduced in Oral and Ma...
- Exploring How Pediatric Residents Develop Adapti...
- Perceptions of Sexual Harassment in Oral and Max...
- Comparative Efficacy of 35% Glycolic Acid Peel A...
- The impact of a complex consulting process with ...
- Oropharyngeal recovery in a patient with the phar...
- Platelet-rich plasma protocols can potentiate vas...
- Relationship between Obesity and Balance in the ...
- Dabigatran for catastrophic antiphospholipid syn...
- Recovery of left ventricular twist and left vent...
- Don't Panic, Scientists Haven't Shown C-Section...
- USDA food safety leaders By Dan Flynn on Aug 29,...
- cGMP Signaling and Modulation in Heart FailureCy...
- SAGE Cardiology and Cardiovascular Medicine hu...
- A clinical comparative study of four interocclus...
- Global vascular guidelines on the management of ...
- Wound Repair and RegenerationEarly View Online...
- The ellipselet transformZahra Khodabandeh, Hosse...
- Public Health Law News Announcements...
- Determining the Association Between End-of-Life ...
- Incidence and risk factors of postoperative deli...
- Prognostic predictions based on pathological fin...
- Public Health Policies on E-Cigarettes Abstract ...
- Comparison of drug-eluting balloon with repeat d...
- What will surgical coronary revascularization lo...
- Anaesthetic considerations in nonagenarians and ...
- The statement of the Asia-Pacific Association fo...
- Duration of allergen immunotherapy for inhalant ...
- Transcranial Shear Wave Elastography of Neonatal...
- Effects of adjuvant mental practice using invers...
- Evidence-Based Use of Perioperative Antibiotic...
- Associations of awake and asleep blood pressure ...
- Diagnostic ‘nightmares’ in an HIV patient with a...
- Comparison of Commercial Enzyme-Linked Immunos...
- Archives of Disease in Childhood
- Segmental arterial mediolysis (SAM) is a nonathero...
- Cardiac MRI,
- Methods Used to Maximize Follow-up: Lessons Lear...
- Memories of Donald Dean Trunkey, Life-Saving Int...
- Building Blocks for Addressing Social Determin...
- Magnetic Resonance Imaging for the Follow-up of ...
- Pakistan Journal of Biological Sciences - Curre...
- Current Status and Future of Robotic Colorectal ...
- Daily Functioning in Schizophrenia: Is There Roo...
- Home-Based Cardiac Rehabilitation: A SCIENTIFIC...
- Obstructive Sleep Apnea and Primary Open-angle G...
- Correcting a Deficiency: Furthering Our Knowledg...
- Immunosuppression and Graft Rejection in Living-...
- American Journal of Orthodontics and Dentofacial O...
- The Pediatric Home Health Care Process: Perspe...
- ► Φεβρουαρίου (1143)
- ► Ιανουαρίου (744)
-
►
2017
(2)
- ► Φεβρουαρίου (1)
- ► Ιανουαρίου (1)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου