Translate

Δευτέρα 12 Αυγούστου 2019

Expression Profile and Function Analysis of Long Non-coding RNAs in the Infection of Coxsackievirus B3

Abstract

The roles of lncRNAs in the infection of enteroviruses have been barely demonstrated. In this study, we used coxsackievirus B3 (CVB3), a typical enterovirus, as a model to investigate the expression profiles and functional roles of lncRNAs in enterovirus infection. We profiled lncRNAs and mRNA expression in CVB3-infected HeLa cells by lncRNA-mRNA integrated microarrays. As a result, 700 differentially expressed lncRNAs (431 up-regulated and 269 down-regulated) and 665 differentially expressed mRNAs (299 up-regulated and 366 down-regulated) were identified in CVB3 infection. Then we performed lncRNA-mRNA integrated pathway analysis to identify potential functional impacts of the differentially expressed mRNAs, in which lncRNA-mRNA correlation network was built. According to lncRNA-mRNA correlation, we found that XLOC-001188, an lncRNA down-regulated in CVB3 infection, was negatively correlated with NFAT5 mRNA, an anti-CVB3 gene reported previously. This interaction was supported by qPCR detection following siRNA-mediated knockdown of XLOC-001188, which showed an increase of NFAT5 mRNA and a reduction of CVB3 genomic RNA. In addition, we observed that four most significantly altered lncRNAs, SNHG11, RP11-145F16.2, RP11-1023L17.1 and RP11-1021N1.2 share several common correlated genes critical for CVB3 infection, such as BRE and IRF2BP1. In all, our studies reveal the alteration of lncRNA expression in CVB3 infection and its potential influence on CVB3 replication, providing useful information for future studies of enterovirus infection.

High-Efficiency Rescue of Equine Infectious Anemia Virus from a CMV-Driven Infectious Clone

Blue-White Colony Selection of Virus-Infected Isogenic Recipients Based on a Chrysovirus Isolated from Penicillium italicum

Abstract

Mycoviruses have been found to infect more than 12 species of Penicillium, but have not been isolated from Penicillium italicum (P. italicum). In this study, we isolated and characterized a new double-stranded RNA (dsRNA) virus, designated Penicillium italicumchrysovirus 1 (PiCV1), from the citrus pathogen P. italicum HSPi-YN1. Viral genome sequencing and molecular characterization indicated that PiCV1 was highly homologous to the previously described Penicillium chrysogenum virus. We further constructed the mutant HSPi-YN1ΔpksP defective in the polyketide synthase gene (pksP), which is involved in pigment biosynthesis, and these mutants formed albino (white) colonies. Then we applied hyphal anastomosis method to horizontally transmit PiCV1 from the white virus-donors (i.e., HSPi-YN1 mutants) to wild-type recipients (i.e., P. italicum strains HSPi-CQ54, HSPi-HB4, and HSPi-HN1), and the desirable PiCV1-infected isogenic recipients, a certain part of blue wild-type strains, can be eventually selected and confirmed by viral genomic dsRNA profile analysis. This blue-white colony screening would be an easier method to select virus-infected P. italicum recipients, according to distinguishable color phenotypes between blue virus-recipients and white virus-donors. In summary, the current work newly isolated and characterized PiCV1, verified its horizontal transmission among dually cultured P. italicum isolates, and based on these, established an effective and simplified approach to screen PiCV1-infected isogenic recipients.

Virology at the Lorne Infection and Immunity Conference 2019

Genomic Characterization of the First Parechovirus in Bats

Establishment of Novel Monoclonal Fabs Specific for Epstein-Barr Virus Encoded Latent Membrane Protein 1

Cross-sectional Seroprevalence and Genotype of Hepatitis E Virus in Humans and Swine in a High-density Pig-farming Area in Central China

Abstract

Hepatitis E virus (HEV) infection is a common public health problem in developing countries. However, the current prevalence of HEV and the relationship of HEV genotype between swine and human within high-density pig-farming areas in central China are still inadequately understood. Here, cross-sectional serological and genotypic surveys of HEV among the 1232 general population, 273 workers occupationally exposed to swine, and 276 pigs in a high-density pig-breeding area, were undertaken by ELISA and nested RT-PCR methods. Anti-HEV IgG was detected in 26.22% of general population and 48.35% of occupational workers. The prevalence of swine serum HEV-Ag was 6.52%. The prevalence of anti-HEV IgG was significantly higher among the workers occupationally exposed to swine than among the general population. An increased HEV seropositivity risk among the general population was associated with either being a peasant or male and was very strongly associated with the increase of age. Among the occupationally exposed group, the prevalence of anti-HEV IgG antibodies increased with age and working years. Among the 30 HEV-IgM-positive people, the infection rates of clerks in the public, peasants, pork retailers, and pig farmers were higher than those of others. A phylogenetic analysis revealed that all the isolates belonged to subgenotype 4d, and four people and four pigs shared 97.04%–100% sequence homology. This study revealed a high HEV seroprevalence among the general population and workers occupationally exposed to swine in the Anlu City, and supports the notion that swine are a source of human HEV infection.

Complementation of Wild-Type and Drug-Resistant Hepatitis B Virus Genomes to Maintain Viral Replication and Rescue Virion Production under Nucleos(t)ide Analogs

Abstract

As the open reading frames of hepatitis B virus (HBV) genomes are overlapping, resistance mutations (MTs) in HBV polymerase may result in stop codon MTs in hepatitis B surface proteins, which are usually detected as a mixed population with wild-type (WT) HBV. The question was raised how the coexistence of nucleos(t)ide analogs (NAs) resistance MTs and WT sequences affects HBV replication. In the present study, HBV genomes with frequently detected reverse transcriptase (RT)/surface truncation MTs, rtA181T/sW172*, rtV191I/sW182* and rtM204I/sW196*, were phenotypically characterized alone or together with their WT counterparts in different ratios by transient transfection in the absence or presence of NAs. In the absence of NAs, RT/surface truncation MTs impaired the expression and secretion of HBV surface proteins, and had a dose-dependent negative effect on WT HBV virion secretion. However, in the presence of NAs, coexistence of MTs with WT maintained viral replication, and the presence of WT was able to rescue the production of MT HBV virions. Our findings reveal that complementation of WT and MT HBV genomes is highly effective under drug treatment.

Specific and Selective Bacteriophages in the Fight against Multidrug-resistant Acinetobacter baumannii

Abstract

Acinetobacter baumannii causes serious infections especially in immunocompromised and/or hospitalized patients. Several A. baumannii strains are multidrug resistant and infect wounds, bones, and the respiratory tract. Current studies are focused on finding new effective agents against A. baumannii. Phage therapy is a promising means to fight this bacterium and many studies on procuring and applying new phages against A. baumannii are currently being conducted. As shown in animal models, phages against multidrug-resistant A. baumannii may control bacterial infections caused by this pathogen and may be a real hope to solve this dangerous health problem.

In Vitro Infectious Risk Assessment of Heliothis virescens ascovirus 3j (HvAV-3j) toward Non-target Vertebrate Cells

Abstract

As specific pathogens of noctuid pests, including Spodoptera exiguaS. lituraHelicoverpa armigera, and Mythimna separata, ascoviruses are suitable for the development of bioinsecticides. In this study, the infectivity of Heliothis virescens ascovirus 3j (HvAV-3j) on insect and mammalian cells was evaluated. HvAV-3j infection induced drastic morphological changes in Sf9, HzAM1, SeFB, and HaFB cells, including swelling and detachment. Notably, the latter phenomena did not occur in HvAV-3j-inoculated mammalian cells (HEK293, 7402, HePG2, PK15, ST, and TM3). MTT assays indicated that HvAV-3j inhibited the growth of host insect cells from the 6th hpi, but no effects were detected in the HvAV-3j-inoculated mammalian cells. Furthermore, viral DNA replication, gene transcription, and protein expression were investigated, and the results consistently suggested that HvAV-3j viruses were not able to replicate their genomic DNA, transcribe, or express their proteins in the non-target vertebrate cells. The HvAV-3j genes were only transcribed and expressed in the four insect cell lines. These results indicated that HvAV-3j was infectious to cells derived from S. frugiperdaS. exiguaH. armigera, and H. zea but not to cells derived from human, pig, and mouse, suggesting that ascoviruses are safe to non-target vertebrate cells.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate