Translate

Πέμπτη 21 Νοεμβρίου 2019

Antidiarrheal potential of Distemonanthus benthamianus Baillon. extracts via inhibiting voltage-dependent calcium channels and cholinergic receptors
William Yousseu Nana, Gilbert Ateufack, Marius Mbiantcha, Shamim Khan, Hafiz Majid Rasheed, Albert Atsamo, Abdul Jabbar Shah, Albert Kamanyi, Taous Khan

Asian Pacific Journal of Tropical Biomedicine 2019 9(11):449-455

Objective: To evaluate spasmolytic mechanisms of aqueous and methanolic extracts from Distemonanthus benthamianus trunk-bark. Methods: Spasmolytic activities of extracts were evaluated in vitro on spontaneous and potassium chloride-induced jejunum contractions, or against cholinergic [acetylcholine (0.3 μmol/L)] stimulations. High performance liquid chromatography analysis of both extracts was performed in reference to standard compounds. Results: Extracts developed concentration-dependent inhibitory activities. The methanolic extract, which revealed better activity, produced spasmolytic and myorelaxant effects at concentrations of 0.01-0.30 mg/mL with EC50 of 0.06 and 0.09 mg/mL (95% CI: 0.03-0.3 mg/mL), respectively. Its anticholinergic effect was obtained at the same concentrations with EC50 of 0.11 mg/mL (95% CI: 0.03-0.3 mg/mL). Chromatograms showed the presence of gallic acid in both extracts, rutin being only detected in the aqueous extract. Conclusions: Distemonanthus benthamianus extracts exhibit verapamil and atropine-like activities, thus highlighting calcium channels and muscarinic receptors blocking potentials, which may be conveyed by some phenolic compounds. These results confirm the antidiarrheal activity of Distemonanthus benthamianus extracts.

Antidiabetic activity of Callicarpa nudiflora extract in type 2 diabetic rats via activation of the AMPK-ACC pathway
Wen-Yu Ma, Le-Ping Ma, Bo Yi, Min Zhang, Shi-Xiu Feng, Li-Ping Tian

Asian Pacific Journal of Tropical Biomedicine 2019 9(11):456-466

Objective: To evaluate the antidiabetic effect of Callicarpa nudiflora extract in streptozotocin- induced diabetic rats. Methods: The chemical constituents in Callicarpa nudiflora extract were identified by UPLC- Q-TOF-MS. Callicarpa nudiflora extract (0.15 and 0.3 g/kg) was orally administered to streptozotocin-induced diabetic rats for 42 d. The effects of Callicarpa nudiflora extract on body weight, blood glucose, serum insulin, total cholesterol, triglyceride, LDL-C and HDL-C were investigated, and its effect on liver and pancreatic pathology was assessed by histopathological analysis. Moreover, the expression levels of adenosine 5’-monophosphate-activated protein kinase (AMPK), glucose transporter type 4 (GLUT4), phospho-AMPK/AMPK, and p-acetyl- coA carboxylase (P-ACC)/ACC in the skeletal muscles and liver were determined by reverse transcription-polymerase chain reaction, Western blotting, and immunohistochemistry. Results: A total of 34 compounds, including 8 iridoids, 14 phenylpropanoids, and 12 flavonoids, were identified from Callicarpa nudiflora extract. Callicarpa nudiflora extract significantly reduced blood glucose and significantly restored all other biochemical parameters to near normal levels, including serum insulin, total cholesterol, triglyceride, LDL-C, and HDL-C. Callicarpa nudiflora extract improved insulin resistance and reversed the damage in the liver and pancreas caused by diabetes. Furthermore, Callicarpa nudiflora extract increased the expression levels of phospho-AMPK, GLUT4, P-ACC, and insulin receptor substrate-1 and decreased the expression level of PPAR γ in diabetic rats. Conclusions: Callicarpa nudiflora extract improved oral glucose tolerance, lipid metabolism, insulin resistance, and reversed the diabetes-related damage in the liver and pancreas by activating the AMPK-ACC pathway.

Hepatoprotective activity of Dypsis lutescens against D-galactosamine-induced hepatotoxicity in rats and its phytoconstituents
Mai M El-Ghonemy, Walaa A El-Kashak, Tahia K Mohamed, Enayat A Omara, Jihan Hussein, Abdel-Razik H Farrag, Mahmoud I Nassar, Mohamed Y El-Kady

Asian Pacific Journal of Tropical Biomedicine 2019 9(11):467-473

Objective: To isolate and identify the polyphenolic constituents of Dypsis lutescens, and evaluate the hepatoprotective activity of the ethanolic extract of Dypsis lutescens leaves. Methods: Hepatoprotective, antioxidant and anti-inflammatory effects of two doses of Dypsis lutescens ethanolic leaf extract were investigated in five groups of six rats each administered with the ethanolic extract of Dypsis lutescens leaves. Liver function parameters were assessed, histopathological study was carried out, the anti-inflammatory mediators and the antioxidant potential in the liver tissues were evaluated. In addition, the total ethanolic extract of Dypsis lutescens leaves was subjected to different chromatographic separation techniques to yield ten phenolic compounds. The isolated compounds structures were spectroscopically elucidated. Results: Hepatoprotective activity of Dypsis lutescens ethanolic extract was estimated for the first time and showed significant activity against histopathological changes induced by D-galactosamine in liver. The extract improved the liver functions. Compared to the D-galactosamine group, the architecture of the liver in the treated groups was improved in the histopathological examination. These results proved the hepatoprotective activity of Dypsis lutescens and its ability in attenuating liver oxidative damage and inflammation. Phytochemical investigations of the total extract afforded ten compounds from the genus Dypsis. Conclusions: The alcoholic extract of Dypsis lutescens exerted potential hepatoprotective action, maintaining liver health and functions.

Antisalmonellal and antioxidant potential of hydroethanolic extract of Canarium schweinfurthii Engl. (Burseraceae) in Salmonella enterica serovar Typhimurium-infected chicks
Jean Baptiste Sokoudjou, Siméon Pierre Chegaing Fodouop, Flavie Gaelle Djoueudam, Norbert Kodjio, Jean Raphaël Kana, Alain Bertrand Fowa, Gabriel Tchuente Kamsu, Donatien Gatsing

Asian Pacific Journal of Tropical Biomedicine 2019 9(11):474-483

Objective: To evaluate the anti-infectious and antioxidant activities of hydroethanolic extract of Canarium schweinfurthii on broiler chickens infected by Salmonella enterica serovar Typhimurium, known to be threatening public health. Methods: Animals were divided into six groups of eight animals per group: the normal control group, negative control group, positive control group and three test groups receiving the plant extract at 5, 19 and 75 mg/kg bw, respecively. The evolution of the disease as well as the effectiveness of the treatment were monitored by stool culture from the second day post infection until the end of the treatment. In addition, the effects of treatment on growth performances and feed conversion efficiency of broilers were evaluated. For the assessment of antioxidant status, enzymatic and non-enzymatic biomarkers such as catalase, glutathione peroxidase, malondialdehyde and nitric oxide were evaluated in the serum and tissues of animals. Results: The infected chickens treated with oxytetracycline recovered on day 7 after treatment, while animals treated with 19 and 75 mg/kg of Canarium schweinfurthii extract recovered on day 9 and those with 5 mg/kg of the extract on day 10. Salmonella infection caused a decrease on catalase and glutathione peroxidase activities; the administration of various doses of Canarium schweinfurthii extract increased these enzymatic activities. Animals receiving the extract at 5 mg/kg showed a significant increase in catalase activity in serum, heart and lungs while all concentrations of the extract significantly increased glutathione peroxidase activity in the serum, liver and spleen. Concerning non-enzymatic biomarkers, Salmonella infection caused a significant increase of nitric oxide and malondialdehyde concentration in the liver and lungs. Treatment with 75 mg/kg of the extract significantly reduced nitric oxide concentration in the heart and lungs while each dose of the extract reduced and normalized the malondialdehyde level in the serum. Additionally, malondialdehyde production was significantly decreased in the liver, heart and lungs after administration of Canarium schweinfurthii extract at all doses. Conclusions: The hydroethanolic extract of Canarium schweinfurthii attenuates oxidative stress, and is effective in the treatment of avian salmonellosis.

Phytochemical profiling of Artocarpus lakoocha Roxb. leaf methanol extract and its antioxidant, antimicrobial and antioxidative activities
Ekta Bhattacharya, Rajashree Dutta, Swati Chakraborty, Suparna Mandal Biswas

Asian Pacific Journal of Tropical Biomedicine 2019 9(11):484-492

Objective: To explore the phytochemical profile of Artocarpus lakoocha Roxb. leaves both qualitatively and quantitatively, and validate its role as a potent antioxidant and antimicrobial agent. Methods: Extraction and isolation of different compounds were done from the leaves of Artocarpus lakoocha based on solvent fractionation method. Subsequently, quantitative and qualitative phytochemical profiling along with antioxidant, antimicrobial and antioxidative activities were tested following standard protocols. Results: Among the five fractions, methanol fraction of Artocarpus lakoocha exhibited higher content of phytochemical compounds [phenols = (3 175.21 ±290.43) mg GAE/g dry extract, flavonoids = (1 173.15±47.52) mg QE/g dry extract and tannins = (923.53±95.21) mg TAE/ g dry extract] as compared to other fractions. The methanol fraction showed the highest antioxidant activity in DPPH and ABTS radical scavenging assays with IC50 of (111.98±34.20) μg/mL and (138.26±0.66) μg/mL, respectively, and the best reduction potential with a value of (316.81±2.96) mg QE/g dry extract in reducing power assay. There was significant correlation between the amount of phytochemicals and antioxidant activities. Moreover, the extract successfully protected Lambda phage DNA from damage at 5 and 6 mg/mL concentration and exhibited substantial bactericidal as well as fungicidal activity. The GC-MS analysis of methanol fraction of Artocarpus lakoocha revealed diethyl phthalate as the main phytochemical compound, along with 3,4-dihydroxymandelic acid, 9-octyl eicosane and 7,8-didehydro-3- methoxy-17-methyl-6-methylene morphinan. Conclusions: The methanol fraction of Artocarpus lakoocha could be used as a potent antioxidant and antimicrobial agent for sustainable agriculture and pharmaceutical purposes.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate