Translate

Παρασκευή 29 Νοεμβρίου 2019


Surface deformation processes in the Carmel Fault based on 17 years of GPS measurements

Abstract

Tectonic activity and crustal deformation in northern Israel are mainly related to the Dead Sea Fault (DSF) and the Carmel–Gilboa Fault System (CGFS). The CGFS is composed of several NW–SE trending faults while the main faults are the Carmel Fault (CF) and Gilboa Fault (GF). The CGFS divides the Sinai Sub-Plate into two tectonic domains. In this study, we geodetically investigate surface deformation processes in the Carmel Fault region. Beside the processing and analysis of GPS measurements, we highlight geodetic aspects in the process of deformation analysis in geodetic monitoring networks. We implement the Extended Free Network Adjustment Constraints solution to calculate the velocities of 24 sites that were measured eight times between 1999 and 2016 using Global Positioning System (GPS). The regional site velocities were estimated with respect to a local datum that was defined by a stable cluster of sites on one side of the fault. We introduced the site velocities into the estimation of surface deformation parameters by using affine transformation also with respect to a local datum. The coordinates of network sites can be transformed to any desired datum by using extended similarity transformation. Examination of the velocity field in relation to a datum defined by points in the Galilee region raises the suggestion that the velocities in the Yizre’el Valley region are due to activities along the GF or similar trending faults on the northern side of the valley which are halted by the Tivon Hills. The best set of deformation parameters, the one which better describes the velocity field, was determined by the second-order Akaike Information Criterion (AICc). The results show significant sinistral deformations of less than 1 mm/year along the Carmel Fault accompanied with extensions and shear strain.


Multi-GNSS orbit determination using satellite laser ranging

Abstract

Galileo, BeiDou, QZSS, and NavIC are emerging global navigation satellite systems (GNSSs) and regional navigation satellite systems all of which are equipped with laser retroreflector arrays for range measurements. This paper summarizes the GNSS-intensive tracking campaigns conducted by the International Laser Ranging Service and provides results from multi-GNSS orbit determination using solely SLR observations. We consider the whole constellation of GLONASS, all active Galileo, four BeiDou satellites: 1 MEO, 3 IGSO, and one QZSS. We analyze the influence of the number of SLR observations on the quality of the 3-day multi-GNSS orbit solution. About 60 SLR observations are needed for obtaining MEO orbits of sufficient quality with the root mean square (RMS) of 3 cm for the radial component when compared to microwave-based orbits. From the analysis of a minimum number of tracking stations, when considering the 3-day arcs, 5 SLR stations do not provide a sufficient geometry of observations. The solution obtained using ten stations is characterized with RMS of 4, 9, and 18 cm in the radial, along-track, and cross-track direction, respectively, for MEO satellites. We also investigate the impact of the length of orbital arc on the quality of SLR-derived orbits. Hence, 5- and 7-day arcs constitute the best solution, whereas 3-day arcs are of inferior quality due to an insufficient number of SLR observations and 9-day arcs deteriorate the along-track component. The median RMS from the comparison between 7-day orbital arcs determined using SLR data with microwave-based orbits assumes values in the range of 3–4, 11–16, and 15–27 cm in radial, along-track, and cross-track, respectively, for MEO satellites. BeiDou IGSO and QZSS are characterized by RMS values higher by a factor of 8 and 24, respectively, than MEO orbits.


Coastal gravity field refinement by combining airborne and ground-based data

Abstract

Gravity field modelling in coastal region faces challenges due to the degradation of the quality of altimeter data and poor coverage of gravimetric measurements. Airborne gravimetry can provide seamless measurements both onshore and offshore with uniform accuracies, which may alleviate the coastal zone problem. We study the role of airborne data for gravity field recovery in a coastal region and the possibility to validate coastal gravity field model against recent altimetry data (CryoSat-2, Jason-1, and SARAL/Altika). Moreover, we combine airborne and ground-based gravity data for regional refinement and quantify and validate the contribution introduced by airborne data. Numerical experiments in the Gippsland Basin over the south-eastern coast of Australia show that the effects introduced by airborne gravity data appear as small-scale patterns on the centimetre scale in terms of quasi-geoid heights. Numerical results demonstrate that the combination of airborne data improves the coastal gravity field, and the recent altimetry data can be potentially used to validate the high-frequency signals introduced by airborne data. The validation against recent altimetry data demonstrates that the combination of airborne measurements improves the coastal quasi-geoid, by ~ 5 mm, compared with a model computed from terrestrial and altimetry-derived gravity anomalies alone. These results show that the recently released altimetry data with relatively denser spatial resolutions and higher accuracies than older altimeter data may be beneficial for gravity field model assessment in coastal areas.


Three-dimensional deformation time series of glacier motion from multiple-aperture DInSAR observation

Abstract

The previously presented Multidimensional Small Baseline Subset (MSBAS-2D) technique computes two-dimensional (2D), east and vertical, ground deformation time series from two or more ascending and descending Differential Interferometric Synthetic Aperture Radar (DInSAR) data sets by assuming that the contribution of the north deformation component is negligible. DInSAR data sets can be acquired with different temporal and spatial resolutions, viewing geometries and wavelengths. The MSBAS-2D technique has previously been used for mapping deformation due to mining, urban development, carbon sequestration, permafrost aggradation and pingo growth, and volcanic activities. In the case of glacier ice flow, the north deformation component is often too large to be negligible. Historically, the surface-parallel flow (SPF) constraint was used to compute the static three-dimensional (3D) velocity field at various glaciers. A novel MSBAS-3D technique has been developed for computing 3D deformation time series where the SPF constraint is utilized. This technique is used for mapping 3D deformation at the Barnes Ice Cap, Baffin Island, Nunavut, Canada, during January–March 2015, and the MSBAS-2D and MSBAS-3D solutions are compared. The MSBAS-3D technique can be used for studying glacier ice flow at other glaciers and other surface deformation processes with large north deformation component, such as landslides. The software implementation of MSBAS-3D technique can be downloaded from http://insar.ca/.


On the feasibility of resolving Android GNSS carrier-phase ambiguities

Abstract

High-precision navigation using low-cost handsets has profound potential for mass-market applications, which has been being boosted by the release of raw GNSS data from Google Android smart devices. However, integer ambiguity fixing for centimeter-level GNSS positioning is prevented by the unaligned chipset initial phase biases (IPBs) found within Android carrier-phase data. In this study, we thus investigate the temporal behaviors of those chipset IPBs using zero baselines where smart devices are linked to external survey-grade antennas, and find that the IPBs are generally stable over time as the mean standard deviation of single-epoch IPB estimates derived from continuous carrier-phase data is as low as 0.04 cycles for all satellites. Unfortunately, these chipset IPBs differ randomly among satellites and change unpredictably if carrier-phase signals are re-tracked, discouragingly suggesting that the chipset IPBs cannot be pre-calibrated or even calibrated on the fly. We therefore have to presumably correct for them in a post-processing manner with the goal of inspecting the potential of Android GNSS ambiguity resolution if hopefully the IPBs can be gone. For a vehicle-borne Nexus 9 tablet with respect to a survey-grade receiver located 100–2000 m away, we achieve the first ambiguity-fixed solution within 321 s and finally 51.6% of all epochs are resolved; the ambiguity-fixed epochs can achieve a positioning accuracy of 1.4, 2.2 and 3.6 cm for the east, north and up components, respectively, showing an improvement of 30–80% compared to the ambiguity-float solutions. While all smart devices above are connected to external survey-grade antennas, we find that a Xiaomi 8 smartphone can be coupled effectively with a miniaturized portable patch antenna, and then achieve commensurate carrier-phase tracking and ambiguity-fixing performance to those of a commercial μ-blox receiver with its dedicated patch antenna. This is encouraging since a compact and inexpensive patch antenna paired with smart devices can promote the democratization of high-precision GNSS.


New analytical solution and associated software for computing full-tensor gravitational field due to irregularly shaped bodies

Abstract

We present a new analytical solution to compute the full-tensor gravity gradient due to a body mass of uniform density with arbitrary geometry. The solution is an extension of an existing analytical computation of gravitational anomalies of a polyhedron source, based on a transition of the general expressions from surface to line integrals. These developments enable the computation of the gravity gradient tensor using the same simple procedures as the gravitational field. The method is validated by comparing with a closed analytical solution, including on/in the near field of the body surface. The algorithm is implemented in the freely available MATLAB-based software called Gal Eötvös Earth Calculator. It is tested successfully for various measurement distances and body mass sizes, enabling applications from local geophysical prospecting to global topographic effect for satellite data. Due to its flexibility, the new solution, and the associated software, is particularly well suited for joint analyses of all types of gravity measurements regardless of the extent, altitude and irregularity of their spatial distribution.


Single-frequency PPP models: analytical and numerical comparison

Abstract

Ionosphere delay is a key factor in the single-frequency Precise Point Positioning (SFPPP). In tradition, two SFPPP models are applied, i.e., ionosphere-corrected (IC) and ionosphere-free-half (IFH) models. The ionospheric delays are directly corrected in IC model with external ionospheric products, while they are eliminated by forming the ionosphere-free combination with code and phase in IFH model. However, almost all studies focus on the numerical performance of these two models and lack the comprehensive study on the estimability and solvability of SFPPP model with either code division multiple access (CDMA) or frequency division multiple access (FDMA) system, respectively. In this paper, we dedicate to the analytical study on SFPPP models for both CDMA and FDMA systems. To assimilate the impact of ionospheric delays on positioning, a general SFPPP model, i.e., ionosphere-weighted (IW) model, is first formulated to identify the varying situations with the different uncertainties of ionospheric constraints. Then, we mathematically show how the IC, IFH and ionosphere-float (IF) models are reduced from IW model. The numerical comparison with GPS and GLONASS data with geodetic and cost-effective receivers effectively confirms our theoretical inference on the relationship of IC, IF and IW models and indicates the best results of IW model for all situations.


GRACE gravity field recovery with background model uncertainties

Abstract

In this article, we present a computationally efficient method to incorporate background model uncertainties into the gravity field recovery process. While the geophysical models typically used during the processing of GRACE data, such as the atmosphere and ocean dealiasing product, have been greatly improved over the last years, they are still a limiting factor of the overall solution quality. Our idea is to use information about the uncertainty of these models to find a more appropriate stochastic model for the GRACE observations within the least squares adjustment, thus potentially improving the gravity field estimates. We used the ESA Earth System Model to derive uncertainty estimates for the atmosphere and ocean dealiasing product in the form of an autoregressive model. To assess our approach, we computed time series of monthly GRACE solutions from L1B data in the time span of 2005 to 2010 with and without the derived error model. Intercomparisons between these time series show that noise is reduced on all spatial scales, with up to 25% RMS reduction for Gaussian filter radii from 250 to 300 km, while preserving the monthly signal. We further observe a better agreement between formal and empirical errors, which supports our conclusion that used uncertainty information does improve the stochastic description of the GRACE observables.


Combined precise orbit determination of GPS and GLONASS with ambiguity resolution

Abstract

Precise orbit products of Global Navigation Satellite Systems (GNSS) are an essential precondition for precise positioning. Ambiguity resolution (AR) can enhance the orbit accuracy in precise orbit determination (POD). To improve the quality of orbits, we propose a method of combined POD for GPS and GLONASS with AR. Firstly, GLONASS wide-lane and narrow-lane fractional cycle biases (FCBs) are daily estimated. Then, by applying the estimated FCBs, GLONASS and GPS double-differenced wide-lane and narrow-lane ambiguities are successfully resolved, even for the baselines of up to several thousand kilometers. Finally, the ambiguity-resolved solutions are achieved by introducing the constraints of the resolved ambiguities into the real-valued solutions. To prove the contribution of the AR to GPS and GLONASS POD, a network including 141 sites is processed over 2018. The results show that the receiver types and firmware versions seriously affect the stability of the daily wide-lane FCBs. The fluctuation of the inter-system biases between two adjacent days is obviously larger than a half narrow-lane wavelength, causing an irregular change of the daily narrow-lane FCBs. After FCB calibration, the success rate of GLONASS can reach up to 90% over the whole year, which is at the same level compared with that of GPS. The improvements of GLONASS and GPS orbits after AR are confirmed by the orbit comparison with the International GNSS Service final products, the orbit misclosures at day boundaries and satellite laser ranging residuals. Due to some other issues, such as the GLONASS frequency-division multiple access and the high noise of observations, the improvement of GLONASS orbit is still less obvious than that of GPS orbit.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate