Related Articles |
Targeting Neuropathic Pain: Pathobiology, Current Treatment and Peptidomimetics as a New Therapeutic Opportunity.
Curr Med Chem. 2019 May 30;:
Authors: Brizzi A, Caroleo MC, De Rosa M, Pandey A, Gallelli L, Badolato M, Carullo G, Cione E
Abstract
There is a huge need for pharmaceutical agents for the treatment of chronic neuropathic pain (NP), a complex condition where patients can suffer from either hyperalgesia or allodynia originating from central or peripheral nerve injuries. To date, the therapeutic guidelines include the use of tricyclic antidepressant, serotonin noradrenaline reuptake inhibitors and anticonvulsants, beside the use of natural compounds and non-pharmacological options. Unfortunately, these drugs suffer from limited efficacy and serious dose-dependent adverse effects. In the last decades, the heptapeptide SP1-7, the major bioactive metabolite produced by substance P (SP) cleavage, has been largely investigated as a potential target for the development of novel peptidomimetic molecules to treat NP. Although the physiological effects of this SP fragment have been studied in detail, the mechanism behind its action is not fully clarified and the target for SP1-7 has not been identified yet. Nevertheless, specific binding sites for the heptapeptide have been found in brain and spinal cord of both mouse and rats. Several structure-affinity relationship (SAR) studies of SP1-7 and of some of its synthetic analogues have been carried out aiming to developing more metabolically stable and effective small molecule SP1-7 amide analogues that could be used as research tools for a better understanding of the SP1-7 system and, in a longer perspective, as potential therapeutic agents for future treatment of NP.
There is a huge need for pharmaceutical agents for the treatment of chronic neuropathic pain (NP), a complex condition where patients can suffer from either hyperalgesia or allodynia originating from central or peripheral nerve injuries. To date, the therapeutic guidelines include the use of tricyclic antidepressant, serotonin noradrenaline reuptake inhibitors and anticonvulsants, beside the use of natural compounds and non-pharmacological options. Unfortunately, these drugs suffer from limited efficacy and serious dose-dependent adverse effects. In the last decades, the heptapeptide SP1-7, the major bioactive metabolite produced by substance P (SP) cleavage, has been largely investigated as a potential target for the development of novel peptidomimetic molecules to treat NP. Although the physiological effects of this SP fragment have been studied in detail, the mechanism behind its action is not fully clarified and the target for SP1-7 has not been identified yet. Nevertheless, specific binding sites for the heptapeptide have been found in brain and spinal cord of both mouse and rats. Several structure-affinity relationship (SAR) studies of SP1-7 and of some of its synthetic analogues have been carried out aiming to developing more metabolically stable and effective small molecule SP1-7 amide analogues that could be used as research tools for a better understanding of the SP1-7 system and, in a longer perspective, as potential therapeutic agents for future treatment of NP.
PMID: 31142248 [PubMed - as supplied by publisher]
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου