Translate

Παρασκευή 28 Ιουνίου 2019

Cancers, Vol. 11, Pages 911: Decoding Immune Heterogeneity of Triple Negative Breast Cancer and Its Association with Systemic Inflammation
Triple negative breast cancer (TNBC) is an aggressive subtype with limited therapeutic options. New opportunities are emerging from current comprehensive characterization of tumor immune infiltration and fitness. Therefore, effectiveness of current chemotherapies and novel immunotherapies are partially dictated by host inflammatory and immune profiles. However, further progress in breast cancer immuno-oncology is required to reach a detailed awareness of the immune infiltrate landscape and to determine additional reliable and easily detectable biomarkers. In this study, by analyzing gene expression profiles of 54 TNBC cases we identified three TNBC clusters displaying unique immune features. Deep molecular characterization of immune cells cytolytic-activity and tumor-inflammation status reveled variability in the local composition of the immune infiltrate in the TNBC clusters, reconciled by tumor-infiltrating lymphocytes counts. Platelet-to-lymphocyte ratio (PLR), a blood systemic parameter of inflammation evaluated using pre-surgical blood test data, resulted negatively correlated with local tumoral cytolytic activity and T cell–inflamed microenvironment, whereas tumor aggressiveness score signature positively correlated with PLR values. These data highlighted that systemic inflammation parameters may represent reliable and informative markers of the local immune tumor microenvironment in TNBC patients and could be exploited to decipher tumor infiltrate properties and consequently to select the most appropriate therapies.
Cancers, Vol. 11, Pages 910: Tanshinone IIA Restores Dynamic Balance of Autophagosome/Autolysosome in Doxorubicin-Induced Cardiotoxicity via Targeting Beclin1/LAMP1
Clinical use of the anti-cancer drug doxorubicin (DOX) is largely limited due to its severe cardiotoxicity. Dysregulation of autophagy is implicated in DOX-induced cardiotoxicity (DIC). Prior studies have indicated that Beclin1 and lysosomal-associated membrane proteins-1 (LAMP1) are critical mediators of autophagy. In this work, by assessing autophagic flux in a DOX-stimulated H9C2 model, we observed autolysosome accumulation caused by interruption of autolysosome degradation. Tanshinone IIA (TSA) is a well-known small molecule that exerts impressive cardioprotective effects on heart failure. Here, we investigated the regulation of TSA in DOX-treated zebrafish, mice, and H9C2 models. Results demonstrated that TSA remarkably improved heart function and reversed pathological changes in vivo, while TSA restored autophagic flux by promoting autolysosome degradation and autophagosome formation. Further experiments demonstrated that these effects were mediated through upregulation of Beclin1 and LAMP1. The mTOR agonist MHY1485 was shown to abrogate the effect of TSA via the UNC-51-like kinase 1 (ULK1)-Beclin1/TFEB-LAMP1 signaling pathway in vitro, demonstrating that TSA protects against DIC by promoting autophagy via the Beclin1/LAMP1 signaling pathway. We further employed a U87 model to assess whether TSA would compromise the antitumor activity of DOX. Intriguingly, the co-treatment of TSA was able to synergistically inhibit proliferative activity. Collectively, in this study we uncover the novel insight that TSA is able to reduce the cardiotoxicity of DOX without compromising antitumor activity.
Cancers, Vol. 11, Pages 909: Favorable Outcome in Patients with Pheochromocytoma and Paraganglioma Treated with 177Lu-DOTATATE
Peptide receptor radiotherapy (PRRT) with 177Lu-DOTATATE has emerged as a promising therapy for neuroendocrine tumors (NETs). This retrospective cohort study aimed to assess the outcome of PRRT for 22 patients with histopathologically confirmed pheochromocytoma (PCC) and paraganglioma (PGL), of which two were localized and 20 metastatic. Radiological response utilized response evaluation criteria in solid tumors 1.1 and toxicity was graded according to common terminology criteria for adverse events version 4. Median 4 (range 3–11) 7.4 GBq cycles of 177Lu-DOTATATE were administered as first-line therapy (n = 13) or because of progressive disease (n = 9). Partial response (PR) was achieved in two and stable disease (SD) in 20 patients. The median overall survival (OS) was 49.6 (range 8.2–139) months and median progression-free survival (PFS) was 21.6 (range 6.7–138) months. Scintigraphic response >50% was achieved in 9/19 (47%) patients. Biochemical response (>50% decrease) of chromogranin A was found in 6/15 (40%) patients and of catecholamines in 3/12 (25%) patients. Subgroup analysis showed Ki-67 <15% associated with longer OS (p = 0.013) and PFS (p = 0.005). PRRT as first-line therapy was associated with increased OS (p = 0.041). No hematological or kidney toxicity grade 3–4 was registered. 177Lu-DOTATATE therapy was associated with favorable outcome and low toxicity. High Ki-67 (≥15%) and PRRT received because of progression on previous therapy could constitute negative predictive factors for OS.
Cancers, Vol. 11, Pages 908: Wnt-11 as a Potential Prognostic Biomarker and Therapeutic Target in Colorectal Cancer
The expression of the secreted factor Wnt-11 is elevated in several types of cancer, including colorectal cancer, where it promotes cancer cell migration and invasion. Analysis of colorectal cancer gene expression databases associated WNT11 mRNA expression with increased likelihood of metastasis in a subset of patients. WNT11 expression was correlated with the expression of the Wnt receptors FZD6, RYK, and PTK7, and the combined expression of WNT11, FZD6 and RYK or PTK7 was associated with an increased risk of 5-year mortality rates. Immunohistochemical analysis of Wnt-11 in a cohort of 357 colorectal cancer patients found significantly higher Wnt-11 levels in tumors, compared with benign tissue. Elevated Wnt-11 levels occurred more frequently in rectal tumors than in colonic tumors and in tumors from women than men. In univariate analysis, increased Wnt-11 expression was also associated with tumor invasion and increased 5-year mortality. High Wnt-11 levels were not associated with high levels of nuclear β-catenin, suggesting Wnt-11 is not simply an indicator for activation of β-catenin-dependent signaling. Expression of Wnt-11 in colorectal cancer cell lines expressing low endogenous Wnt-11 inhibited β-catenin/Tcf activity and increased ATF2-dependent transcriptional activity. WNT11 gene silencing and antibody-mediated inhibition of Wnt-11 in colorectal cancer cell lines expressing high Wnt-11 reduced their capacity for invasion. Together, these observations suggest that Wnt-11 could be a potential target for the treatment of patients with invasive colorectal cancer.
Cancers, Vol. 11, Pages 907: Ovarian Cancer Stemness: Biological and Clinical Implications for Metastasis and Chemotherapy Resistance
Epithelial ovarian cancer is a highly lethal gynecological malignancy that is characterized by the early development of disseminated metastasis. Though ovarian cancer has been generally considered to preferentially metastasize via direct transcoelomic dissemination instead of the hematogenous route, emerging evidence has indicated that the hematogenous spread of cancer cells plays a larger role in ovarian cancer metastasis than previously thought. Considering the distinctive biology of ovarian cancer, an in-depth understanding of the biological and molecular mechanisms that drive metastasis is critical for developing effective therapeutic strategies against this fatal disease. The recent “cancer stem cell theory” postulates that cancer stem cells are principally responsible for tumor initiation, metastasis, and chemotherapy resistance. Even though the hallmarks of ovarian cancer stem cells have not yet been completely elucidated, metastasized ovarian cancer cells, which have a high degree of chemoresistance, seem to manifest cancer stem cell properties and play a key role during relapse at metastatic sites. Herein, we review our current understanding of the cell-biological mechanisms that regulate ovarian cancer metastasis and chemotherapy resistance, with a pivotal focus on ovarian cancer stem cells, and discuss the potential clinical implications of evolving cancer stem cell research and resultant novel therapeutic approaches.
Cancers, Vol. 11, Pages 904: Wnt Signaling in Cancer Metabolism and Immunity
The Wingless (Wnt)/β-catenin pathway has long been associated with tumorigenesis, tumor plasticity, and tumor-initiating cells called cancer stem cells (CSCs). Wnt signaling has recently been implicated in the metabolic reprogramming of cancer cells. Aberrant Wnt signaling is considered to be a driver of metabolic alterations of glycolysis, glutaminolysis, and lipogenesis, processes essential to the survival of bulk and CSC populations. Over the past decade, the Wnt pathway has also been shown to regulate the tumor microenvironment (TME) and anti-cancer immunity. Wnt ligands released by tumor cells in the TME facilitate the immune evasion of cancer cells and hamper immunotherapy. In this review, we illustrate the role of the canonical Wnt/β-catenin pathway in cancer metabolism and immunity to explore the potential therapeutic approach of targeting Wnt signaling from a metabolic and immunological perspective.
Cancers, Vol. 11, Pages 906: Aerosolization of Nanotherapeutics as a Newly Emerging Treatment Regimen for Peritoneal Carcinomatosis
Recent advances in locoregional chemotherapy have opened the door to new approaches for the clinical management of peritoneal carcinomatosis (PC) by facilitating the delivery of anti-neoplastic agents directly to the tumor site, while mitigating adverse effects typically associated with systemic administration. In particular, an innovative intra-abdominal chemotherapeutic approach, known as Pressurized Intraperitoneal Aerosol Chemotherapy (PIPAC), was recently introduced to the intraperitoneal (IP) therapy regimens as a palliative therapeutic option in patients with PC, presumably providing a better drug distribution pattern together with deeper drug penetration into tumor nodules within the peritoneal space. Furthermore, the progress of nanotechnology in the past few decades has prompted the application of different nanomaterials in IP cancer therapy, offering new possibilities in this field ranging from an extended retention time to sustained drug release in the peritoneal cavity. This review highlights the progress, challenges, and opportunities in utilizing cancer nanotherapeutics for locoregional drug delivery, with a special emphasis on the aerosolization approach for intraperitoneal therapies.
Cancers, Vol. 11, Pages 905: The Nucleoshuttling of the ATM Protein: A Unified Model to Describe the Individual Response to High- and Low-Dose of Radiation?
The evaluation of radiation-induced (RI) risks is of medical, scientific, and societal interest. However, despite considerable efforts, there is neither consensual mechanistic models nor predictive assays for describing the three major RI effects, namely radiosensitivity, radiosusceptibility, and radiodegeneration. Interestingly, the ataxia telangiectasia mutated (ATM) protein is a major stress response factor involved in the DNA repair and signaling that appears upstream most of pathways involved in the three precited RI effects. The rate of the RI ATM nucleoshuttling (RIANS) was shown to be a good predictor of radiosensitivity. In the frame of the RIANS model, irradiation triggers the monomerization of cytoplasmic ATM dimers, which allows ATM monomers to diffuse in nucleus. The nuclear ATM monomers phosphorylate the H2AX histones, which triggers the recognition of DNA double-strand breaks and their repair. The RIANS model has made it possible to define three subgroups of radiosensitivity and provided a relevant explanation for the radiosensitivity observed in syndromes caused by mutated cytoplasmic proteins. Interestingly, hyper-radiosensitivity to a low dose and adaptive response phenomena may be also explained by the RIANS model. In this review, the relevance of the RIANS model to describe several features of the individual response to radiation was discussed.
Cancers, Vol. 11, Pages 903: Diagnostic Leukapheresis Enables Reliable Transcriptomic Profiling of Single Circulating Tumor Cells to Characterize Inter-Cellular Heterogeneity in Terms of Endocrine Resistance
Circulating tumor cells (CTCs) hold great promise with regard to prognosis, treatment optimization, and monitoring of breast cancer patients. Single CTC transcriptome profiling might help reveal valuable information concerning intra-patient heterogeneity relevant to therapeutic interventions. In this study, we combined Diagnostic Leukapheresis (DLA), which is a microfluidic enrichment using the ParsortixTM system, micromanipulation with CellCelectorTM and subsequent single cell multi-marker transcriptome profiling. First, a PCR panel consisting of 30 different endocrine resistance and phenotypic marker genes was validated for single cell profiling by using different breast cancer cell lines. Second, this panel was applied to characterize uncultured and cultured CTCs, which were enriched from a cryopreserved DLA product obtained from a patient suffering from metastatic breast cancer resistant to endocrine therapy. Gene expression profiles of both CTC populations uncovered inter CTC heterogeneity for transcripts, which are associated with response or resistance to endocrine therapy (e.g., ESR1, HER2, FGFR1). Hierarchical clustering revealed CTC subpopulations with different expressions of transcripts regarding the CTCs’ differential phenotypes (EpCAM, CD44, CD24, MYC, MUC1) and of transcripts involved in endocrine signaling pathways (FOXO, PTEN). Moreover, ER-positive CTCs exhibited significant higher expression of Cyclin D1, which might be relevant for CDK4/6 inhibitor therapies. Overall, gene expression profiles of uncultured and cultured CTCs resulted in a partly combined grouping. Our findings demonstrate that multi-marker RNA profiling of enriched single uncultured CTCs and cultured CTCs form cryopreserved DLA samples may provide important insights into intra-patient heterogeneity relevant for targeted therapies and therapy resistance.
Cancers, Vol. 11, Pages 902: The d16HER2 Splice Variant: A Friend or Foe of HER2-Positive Cancers?
Human epidermal growth factor receptor 2 (ERBB2 or HER2) amplification/overexpression is associated with a particularly aggressive molecular subtype of breast cancer (BC), characterized by a poor prognosis, increased metastatic potential, and disease recurrence. As only approximately 50% of HER2-positive patients respond to HER2-targeted therapies, greater knowledge of the biology of HER2 and the mechanisms that underlie drug susceptibility is needed to improve cure rates. Evidence suggests that the coexistence of full-length, wild-type HER2 (wtHER2) and altered forms of HER2—such as carboxy-terminus-truncated fragments, activating mutations, and splice variants—significantly increases the heterogeneity of HER2-positive disease, affecting its biology, clinical course, and treatment response. In particular, expression of the d16HER2 splice variant in human HER2-positive BC has a crucial pathobiological function, wherein the absence of sixteen amino acids from the extracellular domain induces the formation of stable and constitutively active HER2 homodimers on the tumor cell surface. Notably, the d16HER2 variant significantly influences the initiation and aggressiveness of tumors, cancer stem cell properties, epithelial–mesenchymal transition (EMT), and the susceptibility of HER2-positive BC cells to trastuzumab compared with its wtHER2 counterpart, thus constituting a novel and potentially clinically useful biomarker. The aims of this review are to summarize the existing evidence regarding the pathobiological functions of the d16HER2 variant and discuss its current and future value with regard to risk assessment and treatment choices in HER2-positive disease.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate