Translate

Παρασκευή 28 Ιουνίου 2019

Cryptography, Vol. 3, Pages 16: I2PA: An Efficient ABC for IoT
The Internet of Things (IoT) is very attractive because of its promises. However, it brings many challenges, mainly issues about privacy preservation and lightweight cryptography. Many schemes have been designed so far but none of them simultaneously takes into account these aspects. In this paper, we propose an efficient attribute-based credential scheme for IoT devices. We use elliptic curve cryptography without pairing, blind signing, and zero-knowledge proof. Our scheme supports block signing, selective disclosure, and randomization. It provides data minimization and transaction unlinkability. Our construction is efficient since smaller key size can be used, and computing time can be reduced. As a result, it is a suitable solution for IoT devices characterized by three major constraints, namely low-energy power, small storage capacity, and low computing power.
Cryptography, Vol. 3, Pages 15: Effect of Self-Invertible Matrix on Cipher Hexagraphic Polyfunction
A cryptography system was developed previously based on Cipher Polygraphic Polyfunction transformations, C i × j ( t ) ≡ A i × i t P i × j m o d N where C i × j , P i × j , A i × i are cipher text, plain text, and encryption key, respectively. Whereas, ( t ) is the number of transformations of plain text to cipher text. In this system, the parameters ( A i × i , ( t ) ) are kept in secret by a sender of messages. The security of this system, including its combination with the second order linear recurrence Lucas sequence (LUC) and the Ron Rivest, Adi Shamir and Leonard Adleman (RSA) method, until now is being upgraded by some researchers. The studies found that there is some type of self-invertible A 4 × 4 should be not chosen before transforming a plain text to cipher text in order to enhance the security of Cipher Tetragraphic Trifunction. This paper also seeks to obtain some patterns of self-invertible keys A 6 × 6 and subsequently examine their effect on the system of Cipher Hexagraphic Polyfunction transformation. For that purpose, we need to find some solutions L 3 × 3 for L 3 × 3 2 ≡ A 3 × 3 mod N when A 3 × 3 are diagonal and symmetric matrices and subsequently implement the key L 3 × 3 to get the pattern of A 6 × 6 .
Cryptography, Vol. 3, Pages 14: Improved Sum of Residues Modular Multiplication Algorithm
Modular reduction of large values is a core operation in most common public-key cryptosystems that involves intensive computations in finite fields. Within such schemes, efficiency is a critical issue for the effectiveness of practical implementation of modular reduction. Recently, Residue Number Systems have drawn attention in cryptography application as they provide a good means for extreme long integer arithmetic and their carry-free operations make parallel implementation feasible. In this paper, we present an algorithm to calculate the precise value of “ X mod p ” directly in the RNS representation of an integer. The pipe-lined, non-pipe-lined, and parallel hardware architectures are proposed and implemented on XILINX FPGAs.
Cryptography, Vol. 3, Pages 13: S-Box on Subgroup of Galois Field
In substitution–permutation network as a cryptosystem, substitution boxes play the role of the only nonlinear part. It would be easy for adversaries to compromise the security of the system without them. 8-bit S-boxes are the most used cryptographic components. So far, cryptographers were constructing 8-bit S-boxes used in cryptographic primitives by exhaustive search of permutations of order 256. However, now for cryptographic techniques with 8-bit S-boxes as confusion layers, researchers are trying to reduce the size of S-box by working with a small unit of data. The aim is to make the techniques compact, fast and elegant. The novelty of this research is the construction of S-box on the elements of the multiplicative subgroup of the Galois field instead of the entire Galois field. The sturdiness of the proposed S-box against algebraic attacks was hashed out by employing the renowned analyses, including balance, nonlinearity, strict avalanche criterion, and approximation probabilities. Furthermore, the statistical strength of the S-box was tested by the majority logic criterion. The fallouts show that the S-box is appropriate for applications for secure data communications. The S-box was also used for watermarking of grayscale images with good outcomes.
Cryptography, Vol. 3, Pages 12: Optimized AKS Primality Testing: A Fluctuation Theory Perspective
The AKS algorithm is an important breakthrough in showing that primality testing of an integer can be done in polynomial time. In this paper, we study the optimization of its runtime. Namely, given a finite cardinality set of alphabets of a deterministic polynomial runtime Turing machine and the number of strings of an arbitrary input integer whose primality is to be tested as the system parameters, we consider the randomized AKS primality testing function as the objective function. Under randomization of the system parameters, we have shown that there are definite signatures of the local and global instabilities in the AKS algorithm. We observe that instabilities occur at the extreme limits of the parameters. It is worth mentioning that Fermat’s little theorem and Chinese remaindering help with the determination of the underlying stability domains. On the other hand, in the realm of the randomization theory, our study offers fluctuation theory structures of the AKS primality testing of an integer through its maximum number of irreducible factors. Finally, our optimization theory analysis anticipates a class of real-world applications for future research and developments, including optimal online security, system optimization and its performance improvements, (de)randomization techniques, and beyond, e.g., polynomial time primality testing, identity testing, machine learning, scientific computing, coding theory, and other stimulating optimization problems in a random environment.
Cryptography, Vol. 3, Pages 11: New Family of Stream Ciphers as Physically Clone-Resistant VLSI-Structures
A concept for creating a large class of lightweight stream ciphers as Key Stream Generators KSGs is presented. The resulting class-size exceeds 2323 possible different KSGs. If one unknown cipher from the KSG-class is randomly picked-up and stored irreversibly within a VLSI device, the device becomes physically hard-to-clone. The selected cipher is only usable by the device itself, therefore cloning it requires an invasive attack on that particular device. Being an unknown selection out of 2323 possible KSGs, the resulting cipher is seen as a Secret Unknown Cipher (SUC). The SUC concept was presented a decade ago as a digital alternative to the inconsistent traditional analog Physically Unclonable Functions (PUFs). This work presents one possible practical self-creation technique for such PUFs as hard-to-clone unknown KSGs usable to re-identify VLSI devices. The proposed sample cipher-structure is based on non-linear merging of randomly selected 16 Nonlinear Feedback Shift Registers (NLFSRs). The created KSGs exhibit linear complexities exceeding 281 and a period exceeding 2161. The worst-case device cloning time complexity approaches 2162. A simple lightweight identification protocol for physically identifying such SUC structures in FPGA-devices is presented. The required self-reconfiguring FPGAs for embedding such SUCs are not yet available, however, expected to emerge in the near future. The security analysis and hardware complexities of the resulting clone-resistant structures are evaluated and shown to offer scalable security levels to cope even with the post-quantum cryptography.
Cryptography, Vol. 3, Pages 10: Flat ORAM: A Simplified Write-Only Oblivious RAM Construction for Secure Processors
Oblivious RAM (ORAM) is a cryptographic primitive which obfuscates the access patterns to a storage, thereby preventing privacy leakage. So far in the current literature, only ‘fully functional’ ORAMs are widely studied which can protect, at a cost of considerable performance penalty, against the strong adversaries who can monitor all read and write operations. However, recent research has shown that information can still be leaked even if only the write access pattern (not reads) is visible to the adversary. For such weaker adversaries, a fully functional ORAM turns out to be an overkill, causing unnecessary overheads. Instead, a simple ‘write-only’ ORAM is sufficient, and, more interestingly, is preferred as it can offer far better performance and energy efficiency than a fully functional ORAM. In this work, we present Flat ORAM: an efficient write-only ORAM scheme which outperforms the closest existing write-only ORAM called HIVE. HIVE suffers from performance bottlenecks while managing the memory occupancy information vital for correctness of the protocol. Flat ORAM introduces a simple idea of Occupancy Map (OccMap) to efficiently manage the memory occupancy information resulting in far better performance. Our simulation results show that, compared to HIVE, Flat ORAM offers 50 % performance gain on average and up to 80 % energy savings.
Cryptography, Vol. 3, Pages 9: A New Class of Strongly Asymmetric PKA Algorithms: SAA-5
A new class of public key agreement (PKA) algorithms called strongly-asymmetric algorithms (SAA) was introduced in a previous paper by some of the present authors. This class can be shown to include some of the best-known PKA algorithms, for example the Diffie–Hellman and several of its variants. In this paper, we construct a new version of the previous construction, called SAA-5, improving it in several points, as explained in the Introduction. In particular, the construction complexity is reduced, and at the same time, robustness is increased. Intuitively, the main difference between SAA-5 and the usual PKA consists of the fact that in the former class, B (Bob) has more than one public key and A (Alice) uses some of them to produce her public key and others to produce the secret shared key (SSK). This introduces an asymmetry between the sender of the message (B) and the receiver (A) and motivates the name for this class of algorithms. After describing the main steps of SAA-5, we discuss its breaking complexity assuming zero complexity of discrete logarithms and the computational complexity for both A and B to create SSK.
Cryptography, Vol. 3, Pages 8: An Improved Identity-Based Multivariate Signature Scheme Based on Rainbow
Multivariate Public Key Cryptography (MPKC) is one of the main candidates for post-quantum cryptography, especially in the area of signature schemes. In this paper, we instantiate a certificate Identity-Based Signature (IBS) scheme based on Rainbow, one of the most efficient and secure multivariate signature schemes. In addition, we revise the previous identity-based signature scheme IBUOV based on the Unbalanced Oil and Vinegar (UOV) scheme on the security and choice of parameters and obtain that our scheme is more efficient than IBUOV in terms of key sizes and signature sizes.
Cryptography, Vol. 3, Pages 7: Automating Privacy Compliance Using Policy Integrated Blockchain
An essential requirement of any information management system is to protect data and resources against breach or improper modifications, while at the same time ensuring data access to legitimate users. Systems handling personal data are mandated to track its flow to comply with data protection regulations. We have built a novel framework that integrates semantically rich data privacy knowledge graph with Hyperledger Fabric blockchain technology, to develop an automated access-control and audit mechanism that enforces users’ data privacy policies while sharing their data with third parties. Our blockchain based data-sharing solution addresses two of the most critical challenges: transaction verification and permissioned data obfuscation. Our solution ensures accountability for data sharing in the cloud by incorporating a secure and efficient system for End-to-End provenance. In this paper, we describe this framework along with the comprehensive semantically rich knowledge graph that we have developed to capture rules embedded in data privacy policy documents. Our framework can be used by organizations to automate compliance of their Cloud datasets.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate