Παρασκευή, 28 Ιουνίου 2019

Atmosphere, Vol. 10, Pages 358: Dust-Associated Airborne Microbes Affect Primary and Bacterial Production Rates, and Eukaryotes Diversity, in the Northern Red Sea: A Mesocosm Approach
The northern Red Sea (NRS) is a low-nutrient, low-chlorophyll (LNLC) ecosystem with high rates of atmospheric deposition due to its proximity to arid regions. Impacts of atmospheric deposition on LNLC ecosystems have been attributed to the chemical constituents of dust, while overlooking bioaerosols. Understanding how these vast areas of the ocean will respond to future climate and anthropogenic change hinges on the response of microbial communities to these changes. We tested the impacts of bioaerosols on the surface water microbial diversity and the primary and bacterial production rates in the NRS, a system representative of other LNLC oceanic regions, using a mesocosm bioassay experiment. By treating NRS surface seawater with dust, which contained nutrients, metals, and viable organisms, and “UV-treated dust” (which contained only nutrients and metals), we were able to assess the impacts of bioaerosols on local natural microbial populations. Following amendments (20 and 44 h) the incubations treated with “live dust” showed different responses than those with UV-treated dust. After 44 h, primary production was suppressed (as much as 50%), and bacterial production increased (as much as 55%) in the live dust treatments relative to incubations amended with UV-treated dust or the control. The diversity of eukaryotes was lower in treatments with airborne microbes. These results suggest that the airborne microorganisms and viruses alter the surface microbial ecology of the NRS. These results may have implications for the carbon cycle in LNLC ecosystems, which are expanding and are especially important since dust storms are predicted to increase in the future due to desertification and expansion of arid regions.
Atmosphere, Vol. 10, Pages 357: Biases in the Measurement of Ambient Nitrogen Dioxide (NO2) by Palmes Passive Diffusion Tube: A Review of Current Understanding
Palmes-type passive diffusion tubes (PDTs) are widely used to measure levels of nitrogen dioxide (NO2) in air quality studies. Molecules of NO2 diffuse down the concentration gradient established in the tube by their reactive conversion into nitrite (NO2−) with triethanolamine (TEA) absorbent at the inner end. The relatively low uptake rate for the tube geometry means that exposure-averaged NO2 concentration can be calculated from first principles using the diffusion coefficient, D, for NO2 in air. This review provides a critical assessment of the current understanding of sources and extent of potential bias in NO2 PDT measurements in each of the following methodological stages: preparation of the absorbent; quantification of the absorbed NO2−; deployment in the field; calculation of the exposure-average NO2 concentration from the absorbed NO2−; and assessment of PDT bias through comparison against a chemiluminescence NO2 analyser. The review has revealed strong evidence that PDT measurement of NO2 can be subject to bias from a number of sources. The most significant positive biases are ambient wind flow at the entrance of the tube potentially leading to bias of tens of percent, and within-tube chemical reaction between NO and O3 causing bias up to ~25% at urban background locations, but much less at roadside and rural locations. Sources of potentially significant negative bias are associated with deployment times of several weeks in warm and sunny conditions, and deployments in atmospheres with relative humidities <~75% which causes incomplete conversion of NO2 to NO2−. Evidence suggests that biases (positive or negative) can be introduced by individual laboratories in the PDT preparation and NO2− quantification steps. It is insufficiently acknowledged that the value of D is not accurately known—some controlled chamber experiments can be interpreted as indicating that the value of D currently used is too low, giving rise to a positive bias in PDT-derived NO2 concentration. More than one bias may be present in a given PDT deployment, and because the biases act independently the net effect on PDT NO2 determination is the linear sum of individual biases acting on that deployment. The effect of net bias can be reduced by application of a local “bias adjustment” factor derived from co-locations of PDTs with a chemiluminescence analyser. When this is carried out, the PDT is suitable as an indicative measure of NO2 for air quality assessments. However, it must be recognised that individual PDT deployments may be subject to unknown variation in the bias adjustment factor for that deployment.
Atmosphere, Vol. 10, Pages 356: Modeling the Effects of Explicit Urban Canopy Representation on the Development of Thunderstorms above a Tropical Mega City
The effects of an explicit three dimensional (3D) urban canopy representation on the development of convective thunderstorms were analyzed with the tropical town energy budget (tTEB) scheme integrated into the advanced regional prediction system (ARPS). The study provides a detailed description of the procedure to couple the system ARPS-tTEB and analyzed the simulation results of the 12 January 2015 sea-breeze event that developed a severe thunderstorm above the metropolitan area of São Paulo (MASP), Brazil. The simulation used realistic boundary and initial conditions from the Global Forecast System (GFS) and sea surface temperature (SST) from the Tropical Rainfall Measurement Mission (TRMM). The system ARPS-tTEB runs of up to 3 km horizontal resolution were carried out with high resolution topography features and land-use types currently available for Southeastern Brazil. The simulated spatial distribution of precipitation was verified against the Climate Prediction Center Morphing Technique (CMORPH), the Global Precipitation Measurement (GPM) and the São Paulo weather radar (SPWR) precipitation estimates by indexes scores. Time series of grid precipitation estimates (ARPS-tTEB and SPWR) and point measurements (rain gauges) were evaluated with a Bayesian statistical method. Results indicate that the urban area of the MASP modulates the precipitation spatial distribution over it. Furthermore, phase and amplitude precipitation accuracy increased with the 3D urban canyon and the urban energy budget scheme in relationship to control runs without urban environment effects.
Atmosphere, Vol. 10, Pages 355: Indications of Ground-based Electromagnetic Observations to A Possible Lithosphere–Atmosphere–Ionosphere Electromagnetic Coupling before the 12 May 2008 Wenchuan MS 8.0 Earthquake
A large number of various precursors have been reported since the Wenchuan MS 8.0 earthquake (EQ) took place on 12 May 2008 in China. In this work, previous investigations of both ground-based electromagnetic (EM) parameters and spatial ionospheric parameters were first examined. The statistical results showed that various anomalies presented different time-scale variations but tended to be characterized by a common feature – reaching their climax on 9 May, three days before the Wenchuan event, which indicates a lithosphere–atmosphere–ionosphere (LAI) electromagnetic coupling. Second, the fluctuations on 9 May based on the observational ground-based ultra low frequency (ULF) electrical field at the Gaobeidian (GBD) station and the direct current/ultra low frequency (DC–ULF) geomagnetic vertical Z field at the Chengdu (CD) station were comparably analyzed with those of ionospheric disturbances reported previously. The results showed that distinct electromagnetic changes, geomagnetic “double low-point” phenomena, and ionospheric disturbances above both sides of the Earth started in turn, respectively, but reached their climax simultaneously within dozens of hours on 9 May. This evolutionary process increases the probability that electromagnetic energy propagates from the epicentral area, via the atmosphere and ionosphere, to the equatorial plane, and through this plane finally to its magnetically conjugated area in the opposite hemisphere, causing electromagnetic disturbances on the Earth’s surface, in the atmosphere, and in the ionosphere and its conjugate point, in that order.
Atmosphere, Vol. 10, Pages 354: Spatio-Temporal Consistency Evaluation of XCO2 Retrievals from GOSAT and OCO-2 Based on TCCON and Model Data for Joint Utilization in Carbon Cycle Research
The global carbon cycle research requires precise and sufficient observations of the column-averaged dry-air mole fraction of CO 2 (XCO 2 ) in addition to conventional surface mole fraction observations. In addition, assessing the consistency of multi-satellite data are crucial for joint utilization to better infer information about CO 2 sources and sinks. In this work, we evaluate the consistency of long-term XCO 2 retrievals from the Greenhouse Gases Observing Satellite (GOSAT), Orbiting Carbon Observatory 2 (OCO-2) in comparison with Total Carbon Column Observing Network (TCCON) and the 3D model of CO 2 mole fractions data from CarbonTracker 2017 (CT2017). We create a consistent joint dataset and compare it with the long-term model data to assess their abilities to characterize the carbon cycle climate. The results show that, although slight increasing differences are found between the GOSAT and TCCON XCO 2 in the northern temperate latitudes, the GOSAT and OCO-2 XCO 2 retrievals agree well in general, with a mean bias ± standard deviation of differences of 0.21 ± 1.3 ppm. The differences are almost within ±2 ppm and are independent of time, indicating that they are well calibrated. The differences between OCO-2 and CT2017 XCO 2 are much larger than those between GOSAT and CT XCO 2 , which can be attributed to the significantly different spatial representatives of OCO-2 and the CT-transport model 5 (TM5). The time series of the combined OCO-2/GOSAT dataset and the modeled XCO 2 agree well, and both can characterize significantly increasing atmospheric CO 2 under the impact of a large El Niño during 2015 and 2016. The trend calculated from the dataset using the seasonal Kendall (S-K) method indicates that atmospheric CO 2 is increasing by 2–2.6 ppm per year.
Atmosphere, Vol. 10, Pages 353: Investigating the Effect of Different Meteorological Conditions on MAX-DOAS Observations of NO2 and CHOCHO in Hefei, China
In this work, a ground-based remote sensing instrument was used for observation of the trace gases NO2 and CHOCHO in Hefei, China. Excessive development and rapid economic growth over the years have resulted in the compromising of air quality in this city, with haze being the most prominent environmental problem. This is first study covering observation of CHOCHO in Hefei (31.783° N, 117.201° E). The observation period of this study, i.e., July 2018 to December 2018, is divided into three different categories: (1) clear days, (2) haze days, and (3) severe haze days. The quality of the differential optical absorption spectroscopy (DOAS) fit for both CHOCHO and NO2 was low during severe haze days due to a reduced signal to noise ratio. NO2 and CHOCHO showed positive correlations with PM2.5, producing R values of 0.95 and 0.98, respectively. NO2 showed strong negative correlations with visibility and air temperature, obtaining R values of 0.97 and 0.98, respectively. CHOCHO also exhibited strong negative correlations with temperature and visibility, displaying R values of 0.83 and 0.91, respectively. The average concentration of NO2, CHOCHO, and PM2.5 during haze days was larger compared to that of clear days. Diurnal variation of both CHOCHO and NO2 showed a significant decreasing trend in the afternoons during clear days due to photolysis, while during haze days these two gases started to accumulate as their residence time increases in the absence of photolysis. There was no prominent weekly cycle for both trace gases.
Atmosphere, Vol. 10, Pages 352: Correlations between PM2.5 and Ozone over China and Associated Underlying Reasons
We investigated the spatial-temporal characteristics of the correlations between observed PM2.5 and O3 over China at a national-scale level, and examined the underlying reasons for the varying PM2.5–O3 correlations by using a chemical transport model. The PM2.5 concentrations were positively correlated with O3 concentrations for most regions and seasons over China, while negative correlations were mainly observed in northern China during winter. The strongest positive PM2.5–O3 correlations with correlation coefficients (r) larger than +0.7 existed in southern China during July, and the strongest negative correlations (r < −0.5) were observed in northern China during January. It was a very interesting phenomenon that the positive PM2.5–O3 correlations prevailed for high air temperature samples, while the negative correlations were generally found in cold environments. Together, the effective inhibitory effect of PM2.5 on O3 generation by reducing photolysis rates and the strong titration effect of freshly emitted NO with O3 contributed to the strongest negative PM2.5–O3 correlations in northern China during January (i.e., in cold environments). The strongest positive correlations in southern China during July (i.e., at high temperature), however, were mainly attributed to the promoting effect of high O3 concentration and active photochemical activity on secondary particle formation.
Atmosphere, Vol. 10, Pages 351: Atmospheric Dry Deposition of Water-Soluble Nitrogen to the Subarctic Western North Pacific Ocean during Summer
To estimate dry deposition flux of atmospheric water-soluble nitrogen (N), including ammonium (NH4+), nitrate (NO3−), and water-soluble organic nitrogen (WSON), aerosol samples were collected over the subarctic western North Pacific Ocean in the summer of 2016 aboard the Korean icebreaker IBR/V Araon. During the cruise, concentrations of NH4+, NO3−, and WSON in bulk (fine + coarse) aerosols ranged from 0.768 to 25.3, 0.199 to 5.94, and 0.116 to 14.7 nmol m−3, respectively. Contributions of NH4+, NO3−, and WSON to total water-soluble N represented ~74%, ~17%, and ~9%, respectively. Water-soluble N concentrations showed a strong gradient from the East Asian continent to the subarctic western North Pacific Ocean, indicating that water-soluble N species were mainly derived from anthropogenic or terrestrial sources. During sea fog events, coarse mode NO3− was likely to be scavenged more efficiently by fog droplets than fine mode NO3−; besides, WSON was detected only in fine mode, suggesting that there may have been a significant influence of sea fog on WSON, such as the photochemical conversion of WSON into inorganic N. Mean dry deposition flux for water-soluble total N (6.3 ± 9.4 µmol m−2 d−1) over the subarctic western North Pacific Ocean was estimated to support a minimum carbon uptake of 42 ± 62 µmol C m−2d−1 by using the Redfield C/N ratio of 6.625.
Atmosphere, Vol. 10, Pages 350: Analysis of Mountain Wave Effects on a Hard Landing Incident in Pico Aerodrome Using the AROME Model and Airborne Observations
A hard landing incident in Pico Aerodrome (LPPI) involving an Airbus A320-200 aircraft is investigated using airborne observations and forecasts of the AROME (Applications of Research to Operations at Mesoscale) model. A second flight is also analyzed. The severity of the wind shear during both flights is quantified using the intensity factor “I” that is based on aerial data and recommended by ICAO (International Civil Aviation Organization). During Flight 1, 36% of the landing phase (below 2100 ft) occurred under “severe” wind shear conditions and 16% occurred under “strong” conditions. Upstream characteristics included southwest winds, stable stratification and a Froude number close to 1. According to the AROME model, these circumstances triggered the development of vertically propagating mountain waves, with maximum vertical velocities above 400 ft/min and exceeding 200 ft/min in the flight path. These conditions, together with the severe wind shear, may have caused the incident. During the second flight, a wake with lee vortices and reversed flow developed in the region of the flight path, which is consistent with a low upstream Froude number and/or with the flow regime diagram of previous studies. During the approach phase of this flight, “severe” wind shear conditions were absent, with “strong” ones occurring 4% of the time. It predominantly displayed “light” conditions during 68% of this phase. As a result of the comparison between “I” and the AROME turbulence indicators, preliminary thresholds are proposed for these indexes. Lastly, this study provides an objective verification of AROME wind forecasts, showing a good agreement with airborne observations for wind speeds above 10 kt, but a poor skill for weaker winds.
Atmosphere, Vol. 10, Pages 349: Biogenic Aerosol in the Arctic from Eight Years of MSA Data from Ny Ålesund (Svalbard Islands) and Thule (Greenland)
In remote marine areas, biogenic productivity and atmospheric particulate are coupled through dimethylsulfide (DMS) emission by phytoplankton. Once in the atmosphere, the gaseous DMS is oxidized to produce H2SO4 and methanesulfonic acid (MSA); both species can affect the formation of cloud condensation nuclei. This study analyses eight years of biogenic aerosol evolution and variability at two Arctic sites: Thule (76.5° N, 68.8° W) and Ny Ålesund (78.9° N, 11.9° E). Sea ice plays a key role in determining the MSA concentration in polar regions. At the beginning of the melting season, in April, up to June, the biogenic aerosol concentration appears inversely correlated with sea ice extent and area, and positively correlated with the extent of the ice-free area in the marginal ice zone (IF-MIZ). The upper ocean stratification induced by sea ice melting might have a role in these correlations, since the springtime formation of this surface layer regulates the accumulation of phytoplankton and nutrients, allowing the DMS to escape from the sea to the atmosphere. The multiyear analysis reveals a progressive decrease in MSA concentration in May at Thule and an increase in July August at Ny Ålesund. Therefore, while the MSA seasonal evolution is mainly related with the sea ice retreat in April, May, and June, the IF-MIZ extent appears as the main factor affecting the longer-term behavior of MSA.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου