Translate

Δευτέρα 17 Ιουνίου 2019

Mitigation and Adaptation Strategies for Global Change
An International Journal Devoted to Scientific, Engineering, Socio-Economic and Policy Responses to Environmental Change
ISSN: 1381-2386 (Print) 1573-1596 (Online)
Description
We are pleased to announce that Mitigation and Adaptation Strategies for Global Change has been accepted in September 2010 by Thomson Reuters (formerly ISI) for inclusion in the Science Citation Index Expanded (also known as SciSearch®), Journal Citation Reports/Science Edition, and Current Contents®/Agriculture, Biology, and Environmental Sciences.

Mitigation and Adaptation Strategies for Global Change addresses a wide range of timely environment, economic and energy topics including global climate change, stratospheric ozone depletion, acid deposition, eutrophication of terrestrial and aquatic ecosystems, species extinction and loss of biological diversity, deforestation and forest degradation, desertification, soil resource degradation, land-use change, sea level rise, destruction of coastal zones, depletion of fresh water and marine fisheries, loss of wetlands and riparian zones and hazardous waste management.
The journal provides a forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales. One primary goal of this journal is to contribute to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated.


Differential spatial-temporal responses of carbon dioxide emissions to economic development: empirical evidence based on spatial analysis

Abstract

Despite the heated debate over the relationship between economic development and carbon dioxide (CO2) emissions, few studies have focused on the impact of spatial relationships between neighboring countries on CO2emissions. Adopting the World Bank’s classification of income levels, this paper classifies 177 countries into four groups and then analyzes the spatial-temporal variations in CO2 emissions. Based on that analysis, the core task of our study is to estimate a carbon Kuznets curve (CKC) from two methods of traditional statistics and spatial econometrics. The main findings indicate that global CO2 emissions have significant spatial clustering characteristics, and the clustering types are closely linked to geographic location and income level. In addition, the existence of standard CKC and spatial CKC were confirmed. Countries with different income levels have different CO2 emission stages, and a country’s CO2 emissions are affected both directly by its own economy and indirectly by the economies of its neighbors. In this context, the mitigation and adaptation strategies for CO2reduction are proposed as follows. (1) Neighboring countries must develop regional cooperative initiatives to reduce CO2 emissions. (2) Clarifying the emission stage of a country is an important basis for policymakers to formulate emission reduction strategies. (3) The economic development and CO2 emissions of neighboring countries are also important factors in formulating emission reduction plans.

Correction to: Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil
The original version of the article unfortunately contained an error.

Assessment of the climate change adaptation capacity of urban agglomerations in China

Abstract

Complex urban ecosystems are relatively fragile in the context of climate change. Given this fragility and the large numbers of urban inhabitants, it is important for researchers and government regulators to assess the adaptation capacity of urban areas with respect to climate change. Currently, there are few studies that have evaluated such adaptation capacity across different regions and periods. In this study, a framework and method are established to assess the adaptation capacity of Chinese cities and urban agglomerations (UAs) with respect to climate change by integrating an SPRR (Source, Pathway, Receptor, Response) model with the Intergovernmental Panel on Climate Change (IPCC) assessment framework. We develop an indicator system for exposure, sensitivity, and resilience and use the set pair analysis (SPA) method to evaluate the adaptation capacity of 12 typical UAs in China. Results show that (1) adaptation capacity levels show wide variation across China, with the majority of cities and UAs having either high or low levels of capacity and a minority having a moderate level of capacity; (2) inland UAs have low adaptation capacity because of low resilience and sensitivity, whereas eastern coastal UAs have high adaptation capacity, for their high resilience and sensitivity; and (3) higher climate change exposures are distributed predominantly in central China. A pronounced economic disparity exists between western inland regions and eastern regions, with the latter having higher levels of economic development and superior infrastructure. The regional economic inequalities and spatial variation in climate variability observed in China are also characteristics shared by many other countries and regions, suggesting that our results may be generalised to other countries and regions. We propose that underdeveloped regions should seek to improve infrastructure and funding directed towards improving adaptation capacity, whereas developed regions should improve their ability to monitor climate change and its impacts.

Learning in greenhouse gas emission inventories in terms of uncertainty improvement over time

Abstract

This paper addresses the problem of learning in greenhouse gas (GHG) emission inventories understood as reductions in uncertainty, i.e., inaccuracy and/or imprecision, over time. We analyze the National Inventory Reports (NIRs) submitted annually to the United Nations Framework Convention on Climate Change. Each NIR contains data on the GHG emissions in a given country for a given year as well as revisions of past years’ estimates. We arrange the revisions, i.e., estimates of historical emissions published in consecutive NIRs into a table, so that each column contains revised estimates of emissions for the same year, reflecting different realizations of uncertainty. We propose two variants of a two-step procedure to investigate the changes of uncertainty over time. In step 1, we assess changes in inaccuracy, which we consider constant within each revision, by either detrending the revisions using the smoothing spline fitted to the most recent revision (method 1) or by taking differences between the most recent revision and the previous ones (method 2). Step 2 estimates the imprecision by analyzing the columns of the data table. We assess learning by detecting and modeling a decreasing trend in inaccuracy and/or imprecision. We analyze carbon dioxide (CO2) emission inventories for the European Union (EU-15) as a whole and its individual member countries. Our findings indicate that although there is still room for improvement, continued efforts to improve accounting methodology lead to a reduction of uncertainty of emission estimates reported in NIRs, which is of key importance for monitoring the realization of countries’ emission reduction commitments.

Quantifying greenhouse gas emissions

Abstract

The assessment of greenhouse gases (GHGs) and air pollutants emitted to and removed from the atmosphere ranks high on international political and scientific agendas. Growing international concern and cooperation regarding the climate change problem have increased the need to consider the uncertainty in inventories of GHG emissions. The approaches to address uncertainty discussed in this special issue reflect attempts to improve national inventories, not only for their own sake but also from a wider, system analytic perspective. They seek to strengthen the usefulness of national emission inventories under a compliance and/or global monitoring and reporting framework. The papers in this special issue demonstrate the benefits of including inventory uncertainty in policy analyses. The issues raised by the authors and featured in their papers, along with the role that uncertainty analysis plays in many of their arguments, highlight the challenges and the importance of dealing with uncertainty. While the Intergovernmental Panel on Climate Change (IPCC) clearly stresses the value of conducting uncertainty analyses and offers guidance on executing them, the arguments made here in favor of performing these studies go well beyond any suggestions made by the IPCC to date. Improving and conducting uncertainty analyses are needed to develop a clear understanding and informed policy. Uncertainty matters and is key to many issues related to inventorying and reducing emissions. Considering uncertainty helps to avoid situations that can create a false sense of certainty or lead to invalid views of subsystems. Dealing proactively with uncertainty allows for the generation of useful knowledge that the international community should have to hand while strengthening the 2015 Paris Agreement, which had been agreed at the 21st Conference of the Parties to the United Nations Framework Convention on Climate Change (UNFCCC). However, considering uncertainty does not come free. Proper treatment of uncertainty is demanding because it forces us to take the step from “simple to complex” and to grasp a holistic system view. Only, thereafter, can we consider potential simplifications. That is, comprehensive treatment of uncertainty does not necessarily offer quick or easy solutions for policymakers. This special issue brings together 13 papers that resulted from the 2015 (4th) International Workshop on Uncertainty in Atmospheric Emissions, in Cracow, Poland. While they deal with many different aspects of the uncertainty in emission estimates, they are guided by the same principal question: “What GHGs shall be verified at what spatio-temporal scale to support conducive legislation at local and national scales, while ensuring effective governance at the global scale?” This question is at the heart of mitigation and adaptation. It requires an understanding of the entire system of GHG sources and sinks, their spatial characteristics and the temporal scales at which they react and interact, the uncertainty (accuracy and/or precision) with which fluxes can be measured, and last but not least, the consequences that follow from all of the aforementioned aspects, for policy actors to frame compliance and/or global monitoring and reporting agreements. This bigger system context serves as a reference for the papers in the special issue, irrespective of their spatio-temporal focus, and is used as a guide for the reader.

Evapotranspiration in North America: implications for water resources in a changing climate

Abstract

Accurate quantification of evapotranspiration (ET) is important to understanding its role in the global hydrological cycle of terrestrial ecosystems and feedbacks to the climate system. This study improves ET quantification in North America using a data assimilation technique and a process-based Terrestrial Ecosystem Model as well as in situ and satellite data. ET is modeled using the Penman-Monteith equation with an improved leaf area index (LAI) algorithm in a biogeochemistry model, the Terrestrial Ecosystem Model (TEM). The evaluated TEM was used to estimate ET at site and regional scales in North America from 2000 to 2010. The estimated annual ET varies from 420 to 450 mm year−1 with the improved model, close to Moderate Resolution Imaging Spectroradiometer monthly data with a root-mean-square error less than 10 mm month−1 for the study period. Alaska, Canada, and the conterminous US account for 33%, 6%, and 61% of the regional ET, respectively. Water availability, the difference between precipitation and ET, is 181 mm month−1, averaged from 2000 to 2010. Under IPCC Representative Concentration Pathway (RCP) 2.6 and RCP 8.5 scenarios, the regional ET increases by 11% and 24%, respectively. Consequently, the water availability decreases in the region by 2.4% and 23.7%, respectively. For the period of 2020–2100, due to uncertain parameters, TEM versions integrated with three different ET algorithms estimated that the regional ET in the USA are 430.5 ± 10.5 mm year−1, 482.1 ± 11.2 mm year−1, and 489.7 ± 13.4 mm year−1, and the available water is − 105.3 ± 8.7 mm year−1, − 20.3 ± 11.9 mm year−1, and − 126.2 ± 15.4 mm year−1, respectively, by the end of the twenty-first century. Our analysis suggests natural terrestrial ecosystem soils in North America will get drier under future climate conditions, which will impact the regional water resource and the climate system. Based on our ET simulation under three climate change scenarios, our study suggests that the RCP 2.6 is the optimum trajectory for preserving freshwater resources in North America and other regions in the globe.

The impact of the board of directors on business climate change management: case of Brazilian companies

Abstract

The corporate sector is one of the main emitters in the world due to the production process and therefore is identified as a major contributor to climate change. In fact, the productive sector is both one of the major aggregators of the impacts of global climate change and a market actor who can play an important role in reducing, mitigating, and adapting the vulnerability of human and natural systems. The main objective of this study was to verify whether the climate change performance of Brazilian companies is influenced by the characteristics of the composition of the board of directors (BD). The performance here is measured according to company’s Carbon Disclosure Project (CDP) score. The score, besides evaluating the quality and comprehensiveness of information provided on climate change mitigation strategies, evaluates the level of concrete and proactive actions, policies, and strategies adopted by companies to mitigate climate change. The study was based on the premise that climate risk management is the responsibility of the board, which is responsible for ratifying important decisions in the company. A multiple linear regression model based on data from the CDP of a sample size equivalent to 72 Brazilian companies, referring to the period among 2014 to 2018, totaling 360 observations listed on the Brazilian stock exchange showed that corporate climate management have significant and positive relationship with the size of the company’s BD, number of independent directors of the BD, Business Sustainability Index (ISE) participation, size of firm, profitability, and industry classification. The findings suggest several strategies that could be used to engage firm in climate management, among which the increase in the number of independent directors in the board composition. In other words, we have found that one of the most effective strategies of mitigation and adaptation that can inhibit or pressure companies to become involved in climate management is increasing the number of independent directors on the board of directors. This result, although based on Brazilian companies, can have implications for the rest of the world’s companies, since, regardless of country, the BD’s role remains the same, ratifying the important decisions in the organization. Therefore, proportion of the number of independent director’s increase leads to the improvement of the company’s involvement in climate issues. Thus, potential investors, for example, may require such a feature before investing in a particular company. In addition, we found that companies that strive to be part of the ISE developed by the São Paulo capital market have a higher climate performance compared to companies that are not part of it, demonstrating therefore that ISE is a key instrument to get companies to increase their concern about environmental issues, in general, and climate, in particular. Thus, as global recommendations for mitigation/adaptation strategies, capital markets around the world can also play an important role in the climate mitigation and adaptation process by creating ISE-like instruments and creating incentives for companies to strive to adhere to these instruments.

Negative emissions of carbon dioxide through chemical-looping combustion (CLC) and gasification (CLG) using oxygen carriers based on manganese and iron

Abstract

Carbon capture and storage (CCS) is an economically attractive strategy for avoiding carbon dioxide (CO2) emissions from, e.g., power plants to the atmosphere. The combination of CCS and biomass combustion would result in a reduction of atmospheric CO2, or net negative emissions, as plant growth is a form of sequestration of atmospheric carbon. Carbon capture can be achieved in a variety of ways, one of which is chemical looping. Chemical-looping combustion (CLC) and chemical looping gasification (CLG) are two promising technologies for conversion of biomass to heat and power or syngas/methane with carbon capture. There have been significant advances made with respect to CLC in the last two decades for all types of fuel, with much less research on the gasification technology. CLG offers some interesting opportunities for production of biofuels together with carbon capture and may have several advantages with respect to the bench mark indirect gasification process or dual-bed fluidized bed (DFBG) in this respect. In CLG, an oxygen carrier is used as a bed material instead of sand, which is common in indirect gasification, and this could have several advantages: (i) all generated CO2 is present together with the syngas or methane in the fuel reactor outlet stream, thus in a concentrated stream, viable for separation and capture; (ii) the air reactor (or combustion chamber) should largely be free from trace impurities, thus preventing corrosion and fouling in this reactor; and (iii) the highly oxidizing conditions in the fuel reactor together with solid oxide surfaces should be advantageous with respect to limiting formation of tar species. In this study, two manganese ores and an iron-based waste material, LD slag, were investigated with respect to performance in these chemical-looping technologies. The materials were also impregnated with alkali (K) in order to gauge possible catalytic effects and also to establish a better understanding of the general behavior of oxygen carriers with alkali, an important component in biomass and biomass waste streams and often a precursor for high-temperature corrosion. The viability of the oxygen carriers was investigated using a synthetic biogas in a batch fluidized bed reactor. The conversion of CO, H2, CH4, and C2H4 was investigated in the temperature interval 800–950 °C. The reactivity, or oxygen transfer rate, was highest for the manganese ores, followed by the LD slag. The conversion of C2H4 was generally high but could largely be attributed to thermal decomposition. The K-impregnated samples showed enhanced reactivity during combustion conditions, and the Mangagran-K sample was able to achieve full conversion of benzene. The interaction of the solid material with alkali showed widely different behavior. The two manganese ores retained almost all alkali after redox testing, albeit exhibiting different migration patterns inside the particles. LD slag lost most alkali to the gas phase during testing, although some remained, possibly explaining a small difference in reactivity. In summary, the CLC and CLG processes could clearly be interesting for production of heat, power, or biofuel with negative CO2 emissions. Manganese ores are most promising from this study, as they could absorb alkali, giving a better conversion and perhaps also inhibiting or limiting corrosion mechanisms in a combustor or gasifier.

Ecological restoration as a strategy for mitigating and adapting to climate change: lessons and challenges from Brazil

Abstract

Climate change is a global phenomenon that affects biophysical systems and human well-being. The Paris Agreement of the United Nations Framework Convention on Climate Change entered into force in 2016 with the objective of strengthening the global response to climate change by keeping global temperature rise this century well below 2 °C above pre-industrial levels and to pursue efforts to limit the temperature increase even further to 1.5 °C. The agreement requires all Parties to submit their “nationally determined contributions” (NDCs) and to strengthen these efforts in the years ahead. Reducing carbon emissions from deforestation and forest degradation is an important strategy for mitigating climate change, particularly in developing countries with large forests. Extensive tropical forest loss and degradation have increased awareness at the international level of the need to undertake large-scale ecological restoration, highlighting the need to identify cases in which restoration strategies can contribute to mitigation and adaptation. Here we consider Brazil as a case study to evaluate the benefits and challenges of implementing large-scale restoration programs in developing countries. The Brazilian NDC included the target of restoring and reforesting 12 million hectares of forests for multiple uses by 2030. Restoration of native vegetation is one of the foundations of sustainable rural development in Brazil and should consider multiple purposes, from biodiversity and ecosystem services conservation to social and economic development. However, ecological restoration still presents substantial challenges for tropical and mega-diverse countries, including the need to develop plans that are technically and financially feasible, as well as public policies and monitoring instruments that can assess effectiveness. The planning, execution, and monitoring of restoration efforts strongly depend on the context and the diagnosis of the area with respect to reference ecosystems (e.g., forests, savannas, grasslands, wetlands). In addition, poor integration of climate change policies at the national and subnational levels and with other sectorial policies constrains the large-scale implementation of restoration programs. The case of Brazil shows that slowing deforestation is possible; however, this analysis highlights the need for increased national commitment and international support for actions that require large-scale transformations of the forest sector regarding ecosystem restoration efforts. Scaling up the ambitions and actions of the Paris Agreement implies the need for a global framework that recognizes landscape restoration as a cost-effective nature-based solution and that supports countries in addressing their remaining needs, challenges, and barriers.

Assessing the high impacts of land use change: spatial characteristics of land uses and ecological compensation based on payment for ecosystem services model in a mountainous area, China

Abstract

Most impacts on ecosystem services (ESs) are related to land use changes that may cause ecosystem fragmentation and loss of ecosystem functions. Spatial planning focused on sustainable landscape development should consider the local potential for providing ESs as well as ecological conservation due to land use changes. To better address the issues that are related to ecological and the ecological and environmental conservation, ecological compensation could coordinate the development of the energy, the economy, and the environment by internalizing environmental externalities and adjusting for the relationships with stakeholders’ benefits. In this study, we developed a framework for analyzing the spatial characteristics of land uses and calculating ecological compensation based on pay for ecosystem services (PESs) from 1995 to 2010 in the upstream of Min River, China. In terms of lacunarity analysis, we firstly explored the spatial patterns of land uses in these two periods that occurred at different spatial characteristic scales. We also observed a strong relationship between lacunarity values and the different distribution patterns of land uses. We then investigated changes in ESs in response to land use change through the assignment of per unit area ecological service value (ESV) method. The total value of ESs dropped from 449.97 billion yuan in 1995 to 441.35 billion yuan in 2010, exhibiting decreasing rate, mainly due to the degradation of woodlands. Soil formation and retention, gas regulation, and biodiversity protection were the three largest ESs, contributing about 50% of the total ESV. Considering the changed relation between social and economic indicators and ESV based on spatial visualization and analysis, we finally constructed a quantitative estimate model for ecological compensation taking a village as study unit and determined standard value so as to evaluate ecological compensation from 1995 to 2010. Spatial differences of the ecological compensation were significant among all the villages and towns. The maximum ecological compensation account (ranged from 1.68 to 8.54 billion yuan) appeared in the villages approximated to Li County, Heishui County, and Songpan County, Sichuan, People’s Republic of China. This proposed framework provides a better understanding of spatial characteristic scales of land uses and enables evaluation of the ecological integrity of landscapes. It also fills up the gap in the field of quantitative evaluation of regional ecological compensation and provides a feasible way to reconcile the conflicts among benefits in the economic, social, and ecological sectors.


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate