Translate

Τρίτη 18 Ιουνίου 2019

Human Cell

Correction to: Three-dimensional bone formation including vascular networks derived from dental pulp stem cells in vitro
The authors would like to correct the error in the publication of the original article.

Classical differentiation protocols upregulate the expression of the axon guidance genes PLXNA2 and SEMA3C in SH-SY5Y neuroblastoma cells

MicroRNA-30e inhibits proliferation and invasion of non-small cell lung cancer via targeting SOX9

Abstract

Previous studies have reported that microRNA-30e (miR-30e) is dysregulated in multiple human cancers. However, the expression, functions and molecular mechanism of miR-30e in NSCLC remain unknown. In this study, we found that miR-30e was expressed at a low level in NSCLC tissues and cell lines. In NSCLC cell lines, enforced expression of miR-30e could inhibit cell proliferation and invasion in vitro. In addition, miR-30e negatively regulated SOX9 expression through directly binding to the 3′UTR of SOX9, and an inverse correlation was found between miR-30e and SOX9 mRNA expression in NSCLC tissues. Moreover, knockdown of SOX9 led to decreased proliferation and invasion of NSCLC cells. Taken together, miR-30e acts as a tumor suppressor in NSCLC, and inhibits cell proliferation and invasion possibly by directly targeting SOX9. These findings might provide novel therapeutic targets for NSCLC.

ClC-5 alleviates renal fibrosis in unilateral ureteral obstruction mice

Abstract

Renal fibrosis is the major feature of end-stage renal disease with high mortality. Chloride (Cl) moving along Cl channels has been suggested to play to an important role in renal function. This study aims to investigate the role of ClC-5 in renal fibrosis in unilateral ureteral occlusion (UUO) mice. C57BL/6 mice received UUO surgery followed by delivery of adeno-associated virus encoding ClC-5 cDNA (AAVClC-5). Western blotting, real-time PCR and histological analysis were used to investigate the effects of ClC-5 on renal fibrosis and underlying mechanisms. The expression of ClC-5 was significantly decreased in renal cortex of UUO mice and transforming growth factor-β1 (TGF-β1)-stimulated HK2 cells. Overexpression of ClC-5 in vivo markedly ameliorated UUO-induced renal injury and fibrosis. The increased expressions of plasminogen activator inhibitor type 1, connective tissue growth factor, collagen III and collagen IV were also inhibited by ClC-5 upregulation. Moreover, UUO-induced immune cell infiltration and inflammatory cytokines release were attenuated in mice infected with AAVClC-5. In addition, the in vivo and in vitro results showed that ClC-5 overexpression prevented epithelial-to-mesenchymal transition (EMT), concomitantly with a restoration of E-cadherin expression and a decrease of vimentin, α-SMA and S100A4 expressions. Furthermore, ClC-5 overexpression inhibited UUO- or TGF-β1-induced increase in nuclear factor kappa B (NF-κB) acetylation and matrix metalloproteinases-9 (MMP-9) expression. However, downregulation of ClC-5 in HK2 cells further potentiated TGF-β1-induced EMT and increase in NF-κB acetylation and MMP-9 expression. ClC-5 upregulation ameliorates renal fibrosis via inhibiting NF-κB/MMP-9 pathway signaling activation, suggesting that ClC-5 may be a novel therapeutic target for treating renal fibrosis and chronic kidney disease.

Proliferation of poorly differentiated endometrial cancer cells through autocrine activation of FGF receptor and HES1 expression

Abstract

Patients with poorly differentiated endometrial cancer show poor prognosis, and effective molecular target-based therapies are needed. Endometrial cancer cells proliferate depending on the activation of HES1 (hairy and enhancer of split-1), which is induced by several pathways, such as the Notch and fibroblast growth factor receptor (FGFR) signaling pathways. In addition, aberrant, ligand-free activation of the FGFR signaling pathway resulting from mutations in FGFR2 was also reported in endometrial cancer. However, a clinical trial showed that there was no difference in the effectiveness of FGFR inhibitors between patients with and without the FGFR2 mutation, suggesting a presence of another signaling pathway for the FGFR activation. Here, we investigated the signaling pathway regulating the expression of HES1 and proliferation of poorly and well-differentiated endometrial cancer cell lines Ishikawa and HEC-50B, respectively. Whereas Ishikawa cells proliferated and expressed HES1 in a Notch signaling-dependent manner, Notch signaling was not involved in HES1 and proliferation of HEC-50B cells. The FGFR inhibitor, NVP-BGJ398, decreased HES1 expression and proliferation of HEC-50B cells; however, HEC50B cells had no mutations in the FGFR2 gene. Instead, HEC-50B cells highly expressed ligands for FGFR2, suggesting that FGFR2 is activated by an autocrine manner, not by ligand-free activation. This autocrine pathway activated Akt downstream of FGFR for cell proliferation. Our findings suggest the usefulness of HES1 as a marker for the proliferation signaling and that FGFR inhibitor may be effective for poorly differentiated endometrial cancers that harbor wild-type FGFR.

Inhibition of angiotensin II-induced cerebrovascular smooth muscle cell proliferation by LRRC8A downregulation through suppressing PI3K/AKT activation

Abstract

Cerebrovascular smooth muscle cell proliferation is the major contributor to cerebrovascular remodeling and stroke. Chloride channels have been suggested to play an important role in the regulation of smooth muscle cell proliferation. This study aims to investigate the effect of leucine-rich repeat-containing 8A (LRRC8A), an essential component of volume-sensitive chloride channels, on cerebrovascular smooth muscle cell proliferation. The data showed that LRRC8A expression was increased in mouse brain artery during angiotensin II (AngII)-induced cerebrovascular remodeling. Similarly, AngII also increased the expression of LRRC8A in human brain vascular smooth muscle cells (HBVSMCs). Knockdown of LRRC8A by siRNA significantly inhibited AngII-induced the proliferation, migration, and invasion in HBVSMCs. The inhibition of HBVSMCs proliferation by LRRC8A downregulation appeared to be involved in suppression of cell-cycle transition. AngII-induced the decrease in p21 and p27 expression and the increase in CDK4 and cyclin D1 expression were attenuated by LRRC8A downregulation. Moreover, inhibition of LRRC8A suppressed AngII-induced PI3K/AKT activation and reactive oxygen species generation, but had no effect on JNK, ERK, and p38 phosphorylation. In addition, activation of PI3K/AKT-signaling pathways with specific agonists significantly abolished the effect of LRRC8A deficiency on HBVSMC proliferation. This present study demonstrates that knockdown of LRRC8A ameliorates AngII-induced cerebrovascular smooth muscle cell proliferation via inhibiting PI3K/AKT pathway, suggesting that LRRC8A may be a novel molecular target in the treatment of vascular remodeling and stroke.

miR-376a inhibits the proliferation and invasion of osteosarcoma by targeting FBXO11

Abstract

Dysregulation of microRNAs (miRNAs) is frequently found in the tumorigenesis of osteosarcoma (OS). miR-376a was found to play tumor suppressive roles in human cancers. However, the role of miR-376a in OS remains unclear. The expression of miR-376a was analyzed by quantitative real-time PCR (qRT-PCR) in OS cell lines. Cell proliferation assay, cell invasion assay, and cell apoptosis assay were performed to detect the biological function of miR-376a after synthetic miRNA transfection. The target of miR-376a was predicted by TargetScan and miRDB, and further validated by luciferase activity reporter assay and western blot. miR-376a expression was revealed to be decreased in OS cell lines. In vitro experiments showed that overexpression of miR-376a inhibits OS cell proliferation and invasion but promotes apoptosis. Luciferase activity reporter assay and western blot assay showed F-box protein 11 (FBXO11) was a direct target of miR-376a. Furthermore, FBXO11 mediated the role of miR-376a on the proliferation, invasion, and apoptosis of OS cells. Collectively, these results revealed miR-376a functions as a tumor suppressor by targeting FBXO11 in OS. It may be developed as a therapeutic target for OS patients.

MiR-1179 inhibits the proliferation of gastric cancer cells by targeting HMGB1

Abstract

Gastric cancer is one of the most common aggressive malignancies with high incidence and mortality. Increasing evidence has suggested that microRNAs (miRNAs) are involved in the initiation and development of gastric cancer. Here, we found that miR-1179 was significantly down-regulated in both gastric cancer tissues and cell lines. Decreased expression of miR-1179 was remarkably correlated with the increased tumor size, higher tumor stage and lymph node metastasis of gastric cancer patients. Overexpression of miR-1179 significantly inhibited the proliferation and invasion of gastric cancer cells. Further molecular experiments showed that miR-1179 bound the 3′-untranslated region of the high mobility group box 1 (HMGB1) and decreased the expression of HMGB1 in gastric cancer cells. The level of HMGB1 was negatively correlated with the expression of miR-1179 in gastric cancer tissues. Rescue experiment demonstrated that restore the expression of HMGB1 significantly inversed the inhibitory effect of miR-1179 on the proliferation of gastric cancer cells. Our results uncovered the novel function of miR-1179/HMGB1 axis in the progression of gastric cancer.

Stem cells in human breast milk

Abstract

Recent studies have demonstrated that breast milk contains a population of cells displaying many of the properties typical of stem cells. This review outlines progress made in this newly emerging field of stem cell biology and provides an analysis of the available data on purification, propagation and differentiation of certain types of progenitor cells from breast milk. The possible fates of breast milk cells, including microchimerism caused by their transmission to the distant organs of the infant, are also discussed. Unique properties of breast milk-derived stem cells, such as their unusually low tumorigenic potential and their negligible ability to form teratomas, are highlighted as obvious advantages for using these cells in regenerative therapy.

Schlafen 12 mediates the effects of butyrate and repetitive mechanical deformation on intestinal epithelial differentiation in human Caco-2 intestinal epithelial cells

Abstract

Intestinal epithelial differentiation may be stimulated by diverse pathways including luminal short-chain fatty acids and repetitive mechanical deformation engendered by villous motility and peristalsis. Schlafen 12 (SLFN12) is a cytosolic protein that stimulates sucrase-isomaltase (SI) expression. We hypothesized that two disparate differentiating stimuli, butyrate and repetitive deformation, would each stimulate SLFN12 expression in human Caco-2 intestinal epithelial cells and that increased SLFN12 expression would contribute to the differentiating activity of the human Caco-2 intestinal epithelial cells. We stimulated Caco-2 cells with 1–2 mM butyrate or repetitive mechanical deformation at 10 cycles/min at an average 10% strain, and measured SLFN12 and SI expression by qRT-PCR. Sodium butyrate enhanced SLFN12 expression at both 1 mM and 2 mM although SI expression was only significantly increased at 2 mM. Repetitive deformation induced by cyclic mechanical strain also significantly increased both SLFN12 and SI gene expression. Reducing SLFN12 by siRNA decreased basal, deformation-stimulated, and butyrate-stimulated SLFN12 levels, compared to control cells treated with non-targeting siRNA, although both deformation and butyrate were still able to stimulate SLFN12 expression in siRNA-treated cells compared to control cells treated with the same siRNA. This attenuation of the increase in SLFN12 expression in response to mechanical strain or butyrate was accompanied by parallel attenuation of SI expression. Butyrate stimulated SI-promoter activity, and reducing SLFN12 by siRNA attenuated butyrate-induced SI-promoter activity. These data suggest that SLFN12 mediates at least in part the stimulation by both butyrate and repetitive mechanical deformation of sucrase-isomaltase, a late stage differentiation marker in human intestinal epithelial cells.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate