Translate

Πέμπτη 20 Ιουνίου 2019


Comparison of image quality of different radionuclides technetium-99m, samarium-153, and iodine-123
Youssef Bouzekraoui, Farida Bentayeb, Hicham Asmi, Faustino Bonutti

Indian Journal of Nuclear Medicine 2019 34(3):201-204

Introduction: The choice of the radionuclide has a key role in nuclear medicine which appearing the lowest scatter fraction. In addition, the presence of penetrated and scattered photons from collimator in single-photon emission computed tomography images degrades resolution and contrast. Thus, image quality depends on sensitivity and resolution of the collimator–detector system. The goal of this study was to compare the image quality that can be achieved by three radionuclides: technetium-99 m (Tc-99 m), iodine-123 (I-123), and samarium-153 (Sm-153). Materials and Methods: Tc-99 m and Sm-153 were imaged with low-energy high resolution (LEHR) collimator, while I-123 was imaged with medium-energy (ME) collimator. We modeled the Siemens Symbia Medical system using Monte Carlo simulation code SIMIND. The imaging characteristics of each radionuclide were investigated by simulated data: point spread function, sensitivity (Cps/MBq) and geometric, penetration and scattering distribution. Results: Tc-99 m and Sm-153 give best and results with LEHR collimator for spatial resolution (full width at half maximum [FWHM] = 3.19 mm; full width at tenth maximum [FWTM] = 6.73 mm) and (FWHM = 3.22 mm; FWTM = 7.39 mm), respectively. Whereas, I-123 provided with ME collimator a lower resolution (FWHM = 4.89 mm; FWTM = 9.89 mm). The sensitivity recorded by Tc-99 m, Sm-153, and I-153 were (31.21 Cps/MBq), (10.16 Cps/MBq), and (51.22 Cps/MBq), respectively. Conclusion: Tc-99 m and Sm-153 give the best and generally similar imaging properties with LEHR. For I-123, the ME collimator helps lowering the influence of high-energy gamma rays. 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate