Translate

Τρίτη 4 Ιουνίου 2019


BMP4 mutations in tooth agenesis and low bone mass
Publication date: July 2019
Source: Archives of Oral Biology, Volume 103
Author(s): Miao Yu, Hao Wang, Zhuangzhuang Fan, Chencheng Xie, Haochen Liu, Yang Liu, Dong Han, Sing-Wai Wong, Hailan Feng
Abstract
Objective
To identify an uncommon genetic cause of tooth agenesis (TA) by utilizing whole exome sequencing (WES) and targeted Sanger sequencing in a cohort of 120 patients with isolated TA.
Design
One deleterious mutation in the gene encoding bone morphogenetic protein 4 (BMP4) was identified in 6 unrelated patients with TA by WES. After that, the coding exons of BMP4 were examined in 114 TA patients using Sanger sequencing. Dual-energy X-ray absorptiometry (DEXA) was used to measure the bone mineral density of patients who carried a BMP4 mutation. Finally, preliminary functional studies of two BMP4 mutants were performed.
Results
We detected 3 novel missense mutations (c.58 G > A: p.Gly20Ser, c.326 G > T: p.Arg109Leu and c.614 T > C: p.Val205Ala) and 1 reported mutation in the BMP4 gene among 120 TA probands. The previously reported BMP4 mutation (c.751C > T: p.His251Tyr) was associated with urethra and eye anomalies. By extending the pedigrees, we determined that the tooth phenotypes had an autosomal dominant inheritance pattern, as individuals carrying a BMP4 mutation exhibit different types of dental anomalies. Interestingly, we observed that patients harboring a BMP4 mutation manifested early onset osteopenia or osteoporosis. Further in vitrofunctional assays demonstrated that two BMP4 mutants resulted in a decreased activation of Smad signaling. Therefore, a loss-of-function in BMP4 may contribute to the clinical phenotypes seen in this study.
Conclusions
We identified 4 mutations in the BMP4 gene in 120 TA patients. To our knowledge, this is the first study to describe human skeletal diseases associated with BMP4 mutations.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate