Correction to: Genetically engineered probiotic Saccharomyces cerevisiae strains mature human dendritic cells and stimulate gag-specific memory CD8 + T cells ex vivo
In the Funding section, the following statement is missing: The MACS cohort study was supported by the NIH, National Institute of Allergy and Infectious Diseases grant U01-AI35041.
|
Correction to: Glycerol metabolism and its regulation in lactic acid bacteria
The original publication of this paper contains some errors.
|
Biological agents for 2,4-dichlorophenoxyacetic acid herbicide degradationAbstract
Phenoxy herbicides are the most widely used family of herbicides worldwide. The dichlorophenoxyacetic acid (2,4-D) is extensively used as a weed killer on cereal crops and pastures. This herbicide is highly water-soluble, and even after a long period of disuse, considerable amounts of both 2,4-D and its main product of degradation, 2,4 dichlorophenol (2,4-DCP), might be found in nature. Biological decomposition of pesticides is an expressive and effective way for the removal of these compounds from the environment. The role of bacteria as well as the enzymes and genes that regulate the 2,4-D degradation has been widely studied, but the 2,4-D degradation by fungi, especially regarding the ability of white-rot basidiomycetes as agent for its bioconversion, has been not extensively considered. This review discusses the current knowledge about the biochemical mechanisms of 2,4-D biodegradation, focused on the role of white-rot fungi in this process. Finally, the cultivation conditions and medium composition for the growth of 2,4-D-degrading microorganisms are also addressed.
|
Structural modulation of gut microbiota reveals Coix seed contributes to weight loss in miceAbstract
Coix seed (CS) is widely used as food material and herbal medicine in Asian countries with hypolipidemic and anti-inflammatory properties. But whether CS takes effect by modulating the composition of the gut microbiota remains unknown. Here, three groups of mice were fed different diets for 5 weeks: standard chow, high fat (HF), and CS added to HF. As compared to chow, mice in HF group demonstrated a significant increase in body weight (BW), fat mass (FM), together with total cholesterol (TC), and they even developed impaired glucose tolerance. These HF-mediated deleterious metabolic effects were counteracted partly by complementing CS. 16S rRNA gene sequencing analysis revealed CS increased the abundance of genera Lactobacillus, Coprococcus, and Akkermansia in the gut microbita, and it also enriched species Akkermansia muciniphila and Lactobacillus agilis. A. muciniphila was reported to be inversely associated with obesity, diabetes and cardiometabolic diseases, while L. agilis was negatively associated with TC, BW, FM and blood glucose in our data. We identified CS-altered microbial metabolic pathways that were linked to Glycerolipid metabolism, Biosynthesis of unsaturated fatty acids, sulfur reduction, and glutathione transport system. Our results indicate CS may be used as prebiotic agents to lose weight and prevent obesity-related metabolic disorders.
|
Genome- and MS-based mining of antibacterial chlorinated chromones and xanthones from the phytopathogenic fungus Bipolaris sorokiniana strain 11134Abstract
Halogen substituents are important for biological activity in many compounds. Genome-based mining of halogenase along with its biosynthetic gene cluster provided an efficient approach for the discovery of naturally occurring organohalogen compounds. Analysis of the genome sequence of a phytopathogenic fungus Bipolaris sorokiniana 11134 revealed a polyketide gene cluster adjacent to a flavin-dependent halogenase capable of encoding halogenated polyketides, which are rarely reported in phytopathogenic fungi. Furthermore, MS- and UV-guided isolation and purification led to the identification of five chlorine-containing natural products together with seven other chromones and xanthones. Two of the chlorinated compounds and four chromones are new compounds. Their structures were elucidated by NMR spectroscopic analysis and HRESIMS data. The biosynthetic gene clusters of isolated compounds and their putative biosynthetic pathway are also proposed. One new chlorinated compound showed activity against Staphylococcus aureus, methicillin-resistant S. aureus, and three clinical-resistant S. aureus strains with a shared minimum inhibitory concentration (MIC) of 12.5 μg/mL. Genome-based mining of halogenases combined with high-resolution MS- and UV-guided identification provides an efficient approach to discover new halogenated natural products from microorganisms.
|
Biofilm systems as tools in biotechnological productionAbstract
The literature provides more and more examples of research projects that develop novel production processes based on microorganisms organized in the form of biofilms. Biofilms are aggregates of microorganisms that are attached to interfaces. These viscoelastic aggregates of cells are held together and are embedded in a matrix consisting of multiple carbohydrate polymers as well as proteins. Biofilms are characterized by a very high cell density and by a natural retentostat behavior. Both factors can contribute to high productivities and a facilitated separation of the desired end-product from the catalytic biomass. Within the biofilm matrix, stable gradients of substrates and products form, which can lead to a differentiation and adaptation of the microorganisms’ physiology to the specific process conditions. Moreover, growth in a biofilm state is often accompanied by a higher resistance and resilience towards toxic or growth inhibiting substances and factors. In this short review, we summarize how biofilms can be studied and what most promising niches for their application can be. Moreover, we highlight future research directions that will accelerate the advent of productive biofilms in biology-based production processes.
|
Fabrication of biobeads expressing heavy metal-binding protein for removal of heavy metal from wastewaterAbstract
Heavy metals, being toxic in nature, are one of the most persistent problems in wastewater. Unabated discharge of large amount of heavy metals into water bodies are known to cause several environmental and health impacts. Biological remediation processes like microbial remediation and phytoremediation are proved to be very effective in the reduction of heavy metal pollutants in wastewater. To circumvent the issues involved several peptides and proteins are being explored. Metal-binding capacity, accumulation, and tolerance of heavy metals in bacteria can be upsurge by overexpressing the genes which code for metal-binding proteins. In the present study, an attempt has been made to bioremediate heavy metal toxicity by overexpressing metal-binding proteins. Two expression cassettes harboring top4 metal-binding protein (T4MBP) and human metallothionein 3 (HMP3) were designed under the control of constitutive CaMV 35S promoter and transformed into E.coli TBI cells. E.coli over expressing HMP3 and T4MBP were immobilized in biobeads which were explored for the detoxification of water contaminated with copper and cadmium. Effects on the concentration of heavy metal before and after treatment with beads were estimated with the help of ICP-OES. Noteworthy results were obtained in the case of copper with 87.2% decrease in its concentration after treatment with biobeads. Significant decrement of 32.8% and 27.3% was found in case of zinc and cadmium, respectively. Mechanisms of binding of proteins with heavy metals were further validated by molecular modeling and metal-binding analysis. HMP3 protein was found to be more efficient in metal accumulation as compared with T4MBP. The fabricated biobeads in this study definitely offer an easy and user-handy approach towards the treatment of toxic wastewater.
|
Interferences that impact measuring optimal l -asparaginase activity and consequent errors interpreting these dataAbstract
l-asparaginase is an enzyme produced by microorganisms, plants, and animals, which is used clinically for the treatment for acute lymphoblastic leukemia (ALL) and, in the food industry, to control acrylamide formation in baked foods. The purpose of this review was to evaluate the available literature regarding microbial sources of l-asparaginase, culture media used to achieve maximum enzyme expression in microbial fermentations, and assay methods employed to assess l-asparaginase activity. Studies were gathered by searching PubMed, and Web of Science databases before January 22, 2018, with no time restrictions. The articles were evaluated according to the source of l-asparaginase being studied, the nitrogen source in the culture medium, the type of sample, and the method employed to evaluate l-asparaginase activity. Bacterial l-asparaginase appeared to be the most commonly studied source of the enzyme and, most often, the enzyme activity was assayed from crude protein extracts using the Nessler method, which is an indirect measurement of asparaginase activity that determines the concentration of ammonia generated after the action of the enzyme on the substrate, l-asparagine. However, ammonia is also generated throughout microbial fermentations and this endogenous ammonia will also reduce the Nessler reagent if crude microbial extracts are used to determine total l-asparaginase activity. We suggest that current estimates of l-asparaginase activity reported in the literature may be overestimated when Nessler reagent is used, since we were unable to find a single study that made reference to the possible inference of fermentation derived ammonia.
|
Comparative global metabolite profiling of xylose-fermenting Saccharomyces cerevisiae SR8 and Scheffersomyces stipitisAbstract
Bioconversion of lignocellulosic biomass into ethanol requires efficient xylose fermentation. Previously, we developed an engineered Saccharomyces cerevisiae strain, named SR8, through rational and inverse metabolic engineering strategies, thereby improving its xylose fermentation and ethanol production. However, its fermentation characteristics have not yet been fully evaluated. In this study, we investigated the xylose fermentation and metabolic profiles for ethanol production in the SR8 strain compared with native Scheffersomyces stipitis. The SR8 strain showed a higher maximum ethanol titer and xylose consumption rate when cultured with a high concentration of xylose, mixed sugars, and under anaerobic conditions than Sch. stipitis. However, its ethanol productivity was less on 40 g/L xylose as the sole carbon source, mainly due to the formation of xylitol and glycerol. Global metabolite profiling indicated different intracellular production rates of xylulose and glycerol-3-phosphate in the two strains. In addition, compared with Sch. stipitis, SR8 had increased abundances of metabolites from sugar metabolism and decreased abundances of metabolites from energy metabolism and free fatty acids. These results provide insights into how to control and balance redox cofactors for the production of fuels and chemicals from xylose by the engineered S. cerevisiae.
|
The effect of reactive oxygen species (ROS) and ROS-scavenging enzymes, superoxide dismutase and catalase, on the thermotolerant ability of Corynebacterium glutamicumAbstract
The function of two reactive oxygen species (ROS) scavenging enzymes, superoxide dismutase (SOD) and catalase, on the thermotolerant ability of Corynebacterium glutamicum was investigated. In this study, the elevation of the growth temperature was shown to lead an increased intracellular ROS for two strains of Corynebacterium glutamicum, the wild-type (KY9002) and the temperature-sensitive mutant (KY9714). In order to examine the effects of ROS-scavenging enzymes on cell growth, either the SOD or the catalase gene was disrupted or overexpressed in KY9002 and KY9714. In the case of the KY9714 strain, it was shown that the disruption of SOD and catalase disturbs cell growth, while the over-productions of both the enzymes enhances cell growth with a growth temperature of 30 °C and 33 °C. Whereas, in the relatively thermotolerant KY9002 strain, the disruption of both enzymes exhibited growth defects more intensively at higher growth temperatures (37 °C or 39 °C), while the overexpression of at least SOD enhanced the cell growth at higher temperatures. Based on the correlation between the cell growth and ROS level, it was suggested that impairment of cell growth in SOD or catalase-disrupted strains could be a result of an increased ROS level. In contrast, the improvement in cell growth for strains with overexpressed SOD or catalase resulted from a decrease in the ROS level, especially at higher growth temperatures. Thus, SOD and catalase might play a crucial role in the thermotolerant ability of C. glutamicum by reducing ROS-induced temperature stress from higher growth temperatures.
|
ΩτοΡινοΛαρυγγολόγος Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,
Translate
Ετικέτες
Τρίτη 18 Ιουνίου 2019
Applied Microbiology and Biotechnology
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
10:20 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Αρχειοθήκη ιστολογίου
-
►
2023
(278)
- ► Φεβρουαρίου (139)
- ► Ιανουαρίου (139)
-
►
2022
(1962)
- ► Δεκεμβρίου (107)
- ► Σεπτεμβρίου (158)
- ► Φεβρουαρίου (165)
- ► Ιανουαρίου (163)
-
►
2021
(3614)
- ► Δεκεμβρίου (152)
- ► Σεπτεμβρίου (271)
- ► Φεβρουαρίου (64)
- ► Ιανουαρίου (357)
-
►
2020
(3279)
- ► Δεκεμβρίου (396)
- ► Σεπτεμβρίου (157)
- ► Φεβρουαρίου (382)
- ► Ιανουαρίου (84)
-
▼
2019
(11718)
- ► Δεκεμβρίου (265)
- ► Σεπτεμβρίου (545)
-
▼
Ιουνίου
(2501)
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Environmental Science and Pollution Research
- Der Hautarzt
- Medizinrecht
- Orofacial Orthopedics / Fortschritte der Kieferort...
- Mycopathologia
- Molecular & Cellular Toxicology
- Sexual Behavior
- Food Science and Biotechnology
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Synthese
- Immunopathology
- Diabetology
- Molecular Histology
- Sophia
- DGNeurologie
- Designs, Codes and Cryptography
- Stochastic Environmental Research and Risk Assessment
- Biogerontology
- Gastroenterology
- Cancer Education
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Psycho-Pharmacology
- Cardiovascular Drugs
- Natural Medicines
- Pediatric Drugs
- Neurosurgical Anesthesiology
- Transplantation
- Psycho-Pharmacology
- Gastrointestinal Surgery
- Otolaryngology
- Strahlentherapie und Onkologie
- History and Philosophy of the Life Sciences
- Law and Philosophy
- Hematology
- Animal Microbiome
- CardioVascular and Interventional Radiology
- Climatic Change
- Chromatographia
- Integrative Medicine
- AUMENTO DA PREVALÊNCIA DE ANGIODISPLASIAS NA ENTE...
- PAQUIMENINGITIS HIPERTRÓFICA POSINFECCIOSA: PRESE...
- EL AMPARO ECONOMICO PARA MEJORAR EL TRATAMIENTO D...
- Philosophical Studies
- Neuro-Oncology
- Medicina Interna
- Los péptidos antimicrobianos son moléculas con una...
- Cirugía Ortopédica y Traumatología
- Acupuncture and Tuina Science
- Medicinal Chemistry Research
- General Thoracic and Cardiovascular Surgery
- Brain Structure and Function
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Paediatric Dermatology
- Allergy and Clinical Immunology
- Buddhists Care: Examining the Impact of Religiou...
- Invasive and Non-Invasive Fungal Rhinosinusitis...
- IJMS, Vol. 20, Pages 3182: Renin Activity in...
- International Journal of Environmental Research an...
- Humanities, Vol. 8, Pages 118: A Mind Trying...
- Heritage, Vol. 2, Pages 1748-1761: Contempor...
- Healthcare, Vol. 7, Pages 82: The Power of M...
- Geriatrics, Vol. 4, Pages 40: Geriatric Asse...
- GastrointestDisord, Vol. 1, Pages 290-300: I...
- Fractal Fract, Vol. 3, Pages 37: Inequalitie...
- Foods, Vol. 8, Pages 231: Use of Attenuated ...
- Fermentation, Vol. 5, Pages 52: Solid State ...
- European Journal of Investigation in Health, Psych...
- Epigenomes, Vol. 3, Pages 12: Polycomb Assem...
- Environments, Vol. 6, Pages 75: Current Stat...
- Diversity, Vol. 11, Pages 102: New Material ...
- Diseases, Vol. 7, Pages 47: Cell and Gene Therap...
- Diagnostics, Vol. 9, Pages 66: In vivo Diagnosis...
- Dentistry Journal, Vol. 7, Pages 64: Impact of D...
- Cryptography, Vol. 3, Pages 16: I2PA: An Efficie...
- Cosmetics, Vol. 6, Pages 36: Unique Hair Propert...
- Clocks & Sleep, Vol. 1, Pages 280-289: How to Re...
- Climate, Vol. 7, Pages 84: The Effect of Agulhas...
- Clean Technol., Vol. 1, Pages 141-153: Optimizat...
- Children, Vol. 6, Pages 81: Effects of Gestation...
- Cells, Vol. 8, Pages 649: Nuclear Phosphoinositi...
- Cancers, Vol. 11, Pages 911: Decoding Immune Het...
- Carbon research
- Brain Sciences, Vol. 9, Pages 154: Neural Sensit...
- Biomolecules, Vol. 9, Pages 255: Site-Specific I...
- Biomimetics, Vol. 4, Pages 43: Matrix Nanopatter...
- Biomedicines, Vol. 7, Pages 46: Protein Nanotube...
- Biology, Vol. 8, Pages 52: The Use of Myelinatin...
- Bioengineering, Vol. 6, Pages 55: Influence of P...
- Beverages, Vol. 5, Pages 40: Biogenic Amines Det...
- Behavioral Sciences, Vol. 9, Pages 69: The Push ...
- Atmosphere, Vol. 10, Pages 358: Dust-Associated ...
- Arts, Vol. 8, Pages 77: The Painting Industries ...
- Antioxidants, Vol. 8, Pages 200: Optimization of...
- Antibodies, Vol. 8, Pages 38: Super Potent Bispe...
- Antibiotics, Vol. 8, Pages 85: Antimicrobial Res...
- Acoustics, Vol. 1, Pages 450-472: Wave Mode Iden...
- ► Φεβρουαρίου (1143)
- ► Ιανουαρίου (744)
-
►
2017
(2)
- ► Φεβρουαρίου (1)
- ► Ιανουαρίου (1)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου