Translate

Παρασκευή 14 Ιουνίου 2019


Abstract Background
Anti-PD-1/PD-L1 drugs are effective as monotherapy in a proportion of NSCLC patients and there is a strong rationale for combining them with targeted therapy. Inhibition of MAPK pathway may have pleiotropic effects on the microenvironment. This work investigates the efficacy of combining MEK and PD-L1 inhibition in pre-clinical and ex-vivo NSCLC models.
Methods
We studied the effects of MEK inhibitors (MEK-I) on PD-L1 and MCH-I protein expression and cytokine production in vitro in NSCLC cell lines and in PBMCs from healthy donors and NSCLC patients, the efficacy of combining MEK-I with anti-PD-L1 antibody in ex-vivo human spheroid cultures obtained from fresh biopsies from NSCLC patients in terms of cell growth arrest, cytokine production and T-cell activation by flow cytometry.
Results
MEK-I modulates in–vitro the immune micro-environment through a transcriptionally decrease of PD-L1 expression, enhance of MHC-I expression on tumor cells, increase of the production of several cytokines, like IFNγ, IL-6, IL-1β and TNFα. These effects trigger a more permissive anti-tumor immune reaction, recruiting immune cells to the tumor sites. We confirmed these data on ex-vivo human spheroids, showing a synergism of MEK and PD-L1 inhibition as result of both direct cancer cell toxicity of MEK-I and its immune-stimulatory effect on cytokine secretion profile of cancer cells and PBMCs with the induction of the ones that sustain an immune-reactive and inflammatory micro-environment.
Conclusions
Our work shows the biological rationale for combining immunotherapy with MEK-I in a reproducible ex-vivo 3D-culture model, useful to predict sensitivity of patients to such therapies.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate