Translate

Κυριακή 17 Νοεμβρίου 2019

Landscape context differentially drives diet breadth for two key pollinator species

Abstract

An animal’s diet contributes to its survival and reproduction. Variation in diet can alter the structure of community-level consumer-resource networks, with implications for ecological function. However, much remains unknown about the underlying drivers of diet breadth. Here we use a network approach to understand how consumer diet changes in response to local and landscape context and how these patterns compare between closely-related consumer species. We conducted field surveys to build 36 quantitative plant-pollinator networks using observation-based and pollen-based records of visitation across the gulf-coast cotton growing region of Texas, US. We focused on two key cotton pollinator species in the region: the social European honey bee, Apis mellifera, and the solitary native long-horned bee, Melissodes tepaneca. We demonstrate that diet breadth is highly context-dependent. Specifically, local factors better explain patterns of diet than regional factors for both species, but A. mellifera and M. tepaneca respond to local factors with contrasting patterns. Despite being collected directly from cotton blooms, both species exhibit significant preferences for non-cotton pollen, indicating a propensity to spend substantial effort foraging on remnant vegetation despite the rarity of these patches in the intensely managed cotton agroecosystem. Overall, our results demonstrate that diet is highly context- and species-dependent and thus an understanding of both factors is key for evaluating the conservation of important cotton pollinators.

Associations among species traits, distribution, and demographic performance after typhoon disturbance for 22 co-occurring woody species in a mesic forest on a subtropical oceanic island

Abstract

To support conservation and restoration, it is important to understand how differences in species functional traits relate to the distribution and demographic performance (i.e., changes in rates of growth, survival and recruitment) of co-occurring endemic, indigenous, and alien species on oceanic islands, where species are especially vulnerable to invasion. We examined interspecific differences in leaf and wood traits, and their associations with species origin (endemic, indigenous, and alien), distribution patterns, and demographic performance after typhoon disturbance for 22 co-occurring woody species at Sekimon on Hahajima Island in the Ogasawara Islands. Principal components analysis showed that the first and second principal components were associated with trait variations along spectra of leaf and wood economics (LES and WES). Species origin was not significantly associated with these components. Conservative species with low resource acquisition along the LES were abundant before the typhoon but acquisitive species had higher recruitment after the typhoon. After the typhoon, acquisitive species along the WES showed higher recruitment, relative growth rates but low survival rates on soil substrates. Endemic and indigenous species had lower recruitment and relative growth rates and endemic species had lower survival rates than alien species. Alien, endemic and indigenous species have similar functional space along the LES and WES, but these functional differences do not simply explain high demographic performance of alien species after the typhoon under the conditions of the species composition shifting from endemic species to alien species after repeated typhoon disturbances.

Settling on leaves or flowers: herbivore feeding site determines the outcome of indirect interactions between herbivores and pollinators

Abstract

Herbivore attack can alter plant interactions with pollinators, ranging from reduced to enhanced pollinator visitation. The direction and strength of effects of herbivory on pollinator visitation could be contingent on the type of plant tissue or organ attacked by herbivores, but this has seldom been tested experimentally. We investigated the effect of variation in feeding site of herbivorous insects on the visitation by insect pollinators on flowering Brassica nigra plants. We placed herbivores on either leaves or flowers, and recorded the responses of two pollinator species when visiting flowers. Our results show that variation in herbivore feeding site has profound impact on the outcome of herbivore–pollinator interactions. Herbivores feeding on flowers had consistent positive effects on pollinator visitation, whereas herbivores feeding on leaves did not. Herbivores themselves preferred to feed on flowers, and mostly performed best on flowers. We conclude that herbivore feeding site choice can profoundly affect herbivore–pollinator interactions and feeding site thereby makes for an important herbivore trait that can determine the linkage between antagonistic and mutualistic networks.

Big brains reduce extinction risk in Carnivora

Abstract

Why are some mammals more vulnerable to extinction than others? Past studies have explored many life history traits as correlates of extinction, but have not been successful at developing a unified understanding of why some species become extinct while other species persist despite  living at the same time, under similar conditions, and facing equivalent challenges. I propose that the lens of wildlife behavior may bring into focus a more comprehensive view of why some species have gone extinct while others persist. The fossil record has recorded extinction events over carnivoran history; unfortunately, behavior is not well recorded in the fossil record. As a proxy for behavior, I examine relative encephalization (RE), brain size after controlling for body mass and phylogeny, as it has been found to be biologically relevant in understanding a wide variety of animal behavioral traits. I focus on the data-rich order Carnivora for which there are comprehensive data on brain size and extinction between 40 and 0.012 million years ago. I use Cox proportional-hazards models to assess the role that RE and body size have played on extinction risk for 224 species in the order Carnivora that existed between 40 and 0.012 million years ago. I show generally that carnivoran species with reduced RE had higher relative risks of extinction. Additionally, I find an interaction between RE and body size such that RE had the largest effects on relative extinction risk in the smallest-bodied species. These results suggest that RE is important for understanding extinction risk in Carnivora over geologic time frames.

Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species

Abstract

Understanding the differences in fine-root traits among different species is essential to gain a detailed understanding of resource conservation and acquisition strategies of plants. We aimed to explore whether certain root traits are consistent among subsets of species and characterize species together into meaningful community groups. We selected 11 woody species from different microbial symbiotic groups (ectomycorrhiza, arbuscular mycorrhiza, and rhizobia) and phylogenetic groups (broad-leaved angiosperms and coniferous gymnosperms) from the cool temperate forests of Nagano, Japan. We measured root architectural (branching intensity), morphological (root tissue density and specific root length), chemical (N and K concentrations), and anatomical (total stele and total cortex) traits. Significant differences were observed in all root traits, although many species did not differ from one another. Branching intensity was found to be the greatest variation in the measured root traits across the 11 woody species. The results of a principal component analysis of root traits showed a distinct separation between angiosperms and gymnosperms. We identified clusters of species based on their multidimensional root traits that were consistent with the different phylogenetic microbial association groups. Gymnosperm roots may be more resource conservative, while angiosperm roots may be more acquisitive for water and nutrients. We consider that the advances in root traits combination will make a breakthrough in our ability to differentiate the community groups rather than individual root trait.

Density-dependent processes fluctuate over 50 years in an ecotone forest

Abstract

Spatial patterns can inform us of forest recruitment, mortality, and tree interactions through time and disturbance. Specifically, successional trajectories of self-thinning and heterospecific negative density dependence can be interpreted from the spatial arrangement of forest stems. We conducted a 50-year spatial analysis of a forest undergoing succession at the ecotone of the southwestern Canadian boreal forest. The forest progressed from early to late sere and experienced repeated severe droughts, forest tent caterpillar outbreaks (Malacosoma disstria), as well as the outbreak of bark beetles. Cumulatively, the forest lost 70% of stems due to natural succession and a combination of disturbance events. Here, we describe spatial patterns displaying signals of successional self-thinning, responses to disturbance, and changes in patterns of density dependence across 50 years. Forest succession and disturbance events resulted in fluctuating patterns of density-dependent mortality and recruitment that persisted into late seral stages. The combined effects of conspecific and heterospecific density-dependent effects on mortality and recruitment resulted in near-spatial equilibrium over the study period. However, the strength and direction of these demographic and spatial processes varied in response with time and disturbance severity. The outbreak of forest tent caterpillar, pronounced drought, and bark beetles combined to reduce stand aggregation and promote a spatial equilibrium. Density-dependent processes of competition and facilitation changed in strength and direction with succession of the plot and in combination with disturbance. Together these results reinforce the importance of successional stage and disturbance to spatial patterns.

The Bogert Effect and environmental heterogeneity

Abstract

A classic question in evolutionary biology is whether behavioral flexibility hastens or hinders evolutionary change. The latter idea, that behavior reduces the number of environmental states experienced by an organism and buffers that organism against selection, has been dubbed the “Bogert Effect” after Charles Bogert, the biologist who first popularized the phenomenon using data from lizards. The Bogert Effect is pervasive when traits like body temperature, which tend to be invariant across space in species that behaviorally thermoregulate, are considered. Nevertheless, behavioral thermoregulation decreases or stops when spatial variation in operative temperature is low. We compared environmental temperatures, thermoregulatory behavior, and a suite of physiological and morphological traits between two populations of the southern rock agama (Agama atra) in South Africa that experience different climatic regimes. Individuals from both populations thermoregulated efficiently, maintaining body temperatures within their preferred temperature range throughout most of their activity cycle. Nevertheless, they differed in the thermal sensitivity of resting metabolic rate at cooler body temperatures and in morphology. Our results support the common assertion that thermoregulatory behavior may prevent divergence in traits like field-active body temperature, which are measured during periods of high environmental heterogeneity. Nevertheless, we show that other traits may be free to diverge if they are under selection during times when environments are homogenous. We argue that the importance of the Bogert Effect is critically dependent on the nature of environmental heterogeneity and will therefore be relevant to some traits and irrelevant to others in many populations.

Population fluctuations and spatial synchrony in an arboreal rodent

Abstract

Climatic conditions, trophic links between species and dispersal may induce spatial synchrony in population fluctuations. Spatial synchrony increases the extinction risk of populations and, thus, it is important to understand how synchrony-inducing mechanisms affect populations already threatened by habitat loss and climate change. For many species, it is unclear how population fluctuations vary over time and space, and what factors potentially drive this variation. In this study, we focus on factors determining population fluctuations and spatial synchrony in the Siberian flying squirrel, Pteromys volans, using long-term monitoring data from 16 Finnish populations located 2–400 km apart. We found an indication of synchronous population dynamics on a large scale in flying squirrels. However, the synchrony was not found to be clearly related to distance between study sites because the populations seemed to be strongly affected by small-scale local factors. The regularity of population fluctuations varied over time. The fluctuations were linked to changes in winter precipitation, which has previously been linked to the reproductive success of flying squirrels. Food abundance (tree mast) and predator abundance were not related to population fluctuations in this study. We conclude that spatial synchrony was not unequivocally related to distance in flying squirrels, as has been observed in earlier studies for more abundant rodent species. Our study also emphasises the role of climate in population fluctuations and the synchrony of the species.

Does lipid-correction introduce biases into isotopic mixing models? Implications for diet reconstruction studies

Abstract

Carbon isotopes are commonly used in trophic ecology to estimate consumer diet composition. This estimation is complicated by the fact that lipids exhibit a more depleted carbon signature (δ13C) than other macromolecules, and are often found at different concentrations among individual organisms. Some researchers argue that lipids bias diet reconstructions using stable isotopes and should be accounted for prior to analysis in food web mixing models, whereas others contend that removing lipids may result in erroneous interpretations of the trophic interactions under study. To highlight this disagreement on best practices for applying δ13C in food web studies, we sampled the recent literature to determine the frequency and method of lipid-correction. We then quantified the potential magnitude and source of bias in mixing model results from a theoretical example and case study of diet reconstruction. The literature was split nearly evenly as to whether lipid-correction was applied to δ13C data in mixing model estimates of diet composition. Comparative mixing model scenarios demonstrated that lipid-correction can substantially alter the estimated diet composition and interpretation of consumer foraging habits. Given the lack of consensus on whether or not to lipid-correct prey and/or consumers, and the associated variation in mixing model results, we call for the establishment of a unified framework that will guide diet reconstruction in stable isotope ecology. Uncertainty in the prevalence of direct routing versus de novo synthesis of lipids across ecosystems, taxa, and trophic levels must be resolved to better guide treatment of lipids in isotope studies using carbon.

Ecosystem engineering creates a new path to resilience in plants with contrasting growth strategies

Abstract

Plant species can be characterized by different growth strategies related to their inherent growth and recovery rates, which shape their responses to stress and disturbance. Ecosystem engineering, however, offers an alternative way to cope with stress: modifying the environment may reduce stress levels. Using an experimental study on two seagrass species with contrasting traits, the slow-growing Zostera marina vs. the fast-growing Zostera japonica, we explored how growth strategies versus ecosystem engineering may affect their resistance to stress (i.e. addition of organic material) and recovery from disturbance (i.e. removal of above-ground biomass). Ecosystem engineering was assessed by measuring sulphide levels in the sediment porewater, as seagrass plants can keep sulphide levels low by aerating the rhizosphere. Consistent with predictions, we observed that the fast-growing species had a high capacity to recover from disturbance. It was also more resistant to stress and still able to maintain high standing stock with increasing stress levels because of its ecosystem engineering capacity. The slow-growing species was not able to maintain its standing stock under stress, which we ascribe to a weak capacity for ecosystem engineering regarding this particular stress. Overall, our study suggests that the combination of low-cost investment in tissues with ecosystem engineering to alleviate stress creates a new path in the growth trade-off between investment in strong tissues or fast growth. It does so by being both fast in recovery and more resistant. As such low-cost ecosystem engineering may occur in more species, we argue that it should be considered in assessing plant resilience.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate