Translate

Δευτέρα 4 Νοεμβρίου 2019

Inhibitory Effect of 5-Aminoimidazole-4-Carbohydrazonamides Derivatives Against Candida spp. Biofilm on Nanohydroxyapatite Substrate

Abstract

Candida can adhere and form biofilm on biomaterials commonly used in medical devices which is a key attribute that enhances its ability to cause infections in humans. Furthermore, biomaterial-related infections represent a major therapeutic challenge since Candida biofilms are implicated in antifungal therapies failure. The goals of the present work were to investigate the effect of three 5-aminoimidazole-4-carbohydrazonamides, namely (Z)-5-amino-1-methyl-N′-aryl-1H-imidazole-4-carbohydrazonamides [aryl = phenyl (1a), 4-fluorophenyl (1b), 3-fluorophenyl (1c)], on Candida albicans and Candida krusei biofilm on nanohydroxyapatite substrate, a well-known bioactive ceramic material. To address these goals, both quantitative methods (by cultivable cell numbers) and qualitative evaluation (by scanning electron microscopy) were used. Compounds cytocompatibility towards osteoblast-like cells was also evaluated after 24 h of exposure, through resazurin assay. The three tested compounds displayed a strong inhibitory effect on biofilm development of both Candida species as potent in vitro activity against C. albicans sessile cells. Regarding cytocompatibility, a concentration-dependent effect was observed. Together, these findings indicated that the potent activity of imidazole derivatives on Candida spp. biofilms on nanohydroxyapatite substrate, in particular compound 1c, is worth further investigating.

Graphic Abstract


Large Aortic Prosthesis Fungal Vegetation Due to Candida parapsilosis : An Uncommon Presentation

Frequency of the Mating-Type ( MAT1 ) in Histoplasma capsulatum Isolates from Buenos Aires, Argentina

Abstract

Sex is genetically determined in Histoplasma capsulatum, governed by a sex-specific region in the genome called the mating-type locus (MAT1). We investigate the distribution of isolates of two H. capsulatum mating types in the clades circulating in Buenos Aires, Argentina. Forty-nine H. capsulatum isolates were obtained from the culture collection of the Mycology Center. The MAT1 locus was identified by PCR from the yeast suspension. The analysis of forty-eight isolates from clinical samples exhibited a ratio of 1.7 (MAT1-1:MAT1-2) and the only isolate from soil was MAT1-1. Forty-five H. capsulatum isolates belonged to the LAm B clade (H. capsulatum from Latin American group B clade) and showed a ratio of 1.8 (MAT1-1:MAT1-2). These results suggest an association between the mating types in isolates belonging to the LAm B clade. It remains to be defined whether a greater virulence should be attributed to the differences between the strains of the opposite mating type of the LAm B clade.

Disseminated Emergomyces pasteurianus Infection in India: A Case Report and a Review

Abstract

We report here a case of disseminated Emergomyces pasteurianus infection from India in a patient with AIDS. The patient presented with weight loss, dyspnoea and multiple non-tender skin lesions over face, neck and chest over 3 months. The case was diagnosed by microscopy, histopathology of sample and isolation of fungus from skin lesion, breast nodule, bone marrow and sputum. The identification of the isolates was confirmed by sequencing internal transcribed spacer region of rDNA, beta-tubulin, actin and intein PRP8. The patient responded well to intravenous amphotericin B deoxycholate followed by itraconazole therapy.

From the Pharynx to the Brain: A Case of Rapidly Progressing Mucormycosis

The High Diversity and Variable Susceptibility of Clinically Relevant Acremonium -Like Species in China

Abstract

Acremonium-like fungi are emerging as important opportunistic pathogens in cutaneous, subcutaneous and serious invasive infections, especially in immunocompromised and debilitated individuals, and Acremonium infections are usually resistant to antifungal therapy. Several molecular studies have demonstrated that many species in the genus Acremonium are polyphyletic, and currently, the genus is restricted to the family Bionectriaceae (Hypocreales). Molecular identification and in vitro antifungal susceptibility tests of Acremonium-like fungi isolated from human clinical specimens in China were performed in this study. Three genetic loci: the large subunit ribosomal RNA gene (LSU), ribosomal internal transcribed spacer and elongation factor 1-α (EF1-α), were used to assess their taxonomic position for correct identification among various species. The multilocus study of twenty-eight strains showed that these strains were distributed in three main lineages: egyptiacumCordycipitaceae and SarocladiumAcremonium egyptiacum and Sarocladium kiliense were the main species of these strains, and three isolates were too phylogenetically distant to be considered undescribed species. Relatively low minimum inhibitory concentrations (MICs) of 0.25–2 and 0.031–0.5 μg/mL were found for voriconazole and terbinafine for most species, respectively. Varied antifungal activities of ciclopirox olamine, amorolfine and posaconazole were found in our study. However, no antifungal effect of sertaconazole, itraconazole or fluconazole was observed against most strains. This is the first study on Acremonium-like species diversity by multilocus sequence analyses and antifungal susceptibility of clinically relevant isolates in China.

Evaluation of the Induction of Cell-Mediated Immunity Against Candida albicans in a Model of Cutaneous Infection in Newborn 0-Day-Old Mice

Abstract

Candida albicans is a commensal fungus of the skin and mucous membranes in humans, but it is also responsible for mucocutaneous and systemic infections in immunocompromised patients like low birth weight neonates and premature newborns. The epicutaneous application of C. albicans is widely used to study the immune response against this pathogen in adult mice models. However, the immune response of newborns against infections caused by the genus Candida is poorly understood. In order to mimic premature human infection, we developed a model of C. albicans epicutaneous infection in newborn mice. We found that yeasts were able to colonize while the pseudohyphae invaded the epidermis. Recruitment of polymorphonuclear and mononuclear cells at the infection zone was observed. Fungal invasion, fungal burden and cellular infiltration displayed a time- and dose-dependent response. Interestingly, newborn mice were able to control C. albicans primary infection. Finally, we showed that the epicutaneous infection of C. albicans in newborn mice at birth results in the induction of cell-mediated immunity as evinced by delayed-type hypersensitivity assays.

Molecular Typing of Candida glabrata

Abstract

The yeast Candida glabrata has emerged, second only to Candida albicans, to be one of the most frequently isolated fungi in clinical specimen from human. Its frequent resistance towards azole antifungal drugs and the high capacity to form biofilms on indwelling catheters of individual isolates render it an often difficult to treat pathogen. Hence, there is a notably increasing scientific and clinical interest in this species. This has led to the development of a variety of molecular tools for genetic modification, strain collections, and last but not least different approaches to analyse the population structure among isolates of different geographical and clinical contexts. Often, these are used to study correlations (or the absence thereof) with different pathogenicity, virulence, or drug resistance traits. Three molecular methods have been used to type within the C. glabrata population on a genetic level by multiple studies: multi-locus sequence typing, microsatellite length polymorphisms, and clustering of whole-genome sequencing data, and these are subject of this review.

Lineages Within the Trichophyton rubrum Complex

Abstract

The most important species of the Trichophyton rubrum group are T. rubrum, causing mainly skin and nail infections, and T. violaceum which is mostly scalp-associated. The status of a third species, T. soudanense, has been under debate. With a polyphasic approach, using molecular phylogenetic techniques, MALDI-TOF mass spectrometry and physiological and morphological analysis, we re-evaluated the T. rubrum complex. Our results support four genetic lineages within the complex each with a distinct morphology and identifiable via MALDI-TOF MS: T. rubrumT. violaceumT. soudanense and the T. yaoundei clade. However, ITS and Bt2 sequencing data could not confirm these taxa as four monophyletic species. Our results also suggest that strains formerly identified as T. kuryangei and T. megninii should be considered in future taxonomic studies.

Sixty Years from Segretain’s Description: What Have We Learned and Should Learn About the Basic Mycology of Talaromyces marneffei ?

Abstract

The fungus Talaromyces marneffei was described by Professor Gabriel Segretain in 1959, originally as a member of the genus Penicillium. As early as 60 years ago, its peculiarity in exhibiting temperature-dependent morphological dimorphism, its characteristic ability to secrete diffusing red pigment during the mycelial phase and its pathogenicity have already been recognised. Six decades have passed, and our understanding on this intriguing fungus has improved. Apart from the clinical aspect, we have gained a glimpse on its taxonomy, animal or environmental source(s), mechanism of thermal dimorphism, molecular genetics, virulence as well as pathogenesis. However, we are still on our way to get out of the talaromycosis mist. A lot more collective endeavour on T. marneffei research is needed to solve the jigsaw puzzle.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate