Translate

Δευτέρα 4 Νοεμβρίου 2019

Correction to: Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis
The original version of the article unfortunately contained a typo in the fourth author name. The author name was incorrectly listed as Rochelle Tixeria. The correct name should be Rochelle Tixeira. The original article has been corrected.

PP2Ac upregulates PI3K-Akt signaling and induces hepatocyte apoptosis in liver donor after brain death

Abstract

Multiple research groups have demonstrated that the outcome of patients receiving liver grafts from brain death donors (DBD) is poorer when compared with patients receiving grafts from living donors. This might be due to an increased hepatocyte apoptosis induced after brain death (BD). In this work, we found that the activity of PP2A-Akt pathway is significantly increased in clinical donor ex vivo hepatocytes after BD by iTRAQ protein quantification analysis. The same results were confirmed in animal models. A time-dependent promotion of apoptosis was also found in DBD rabbit liver, as demonstrated by the increased levels of cleaved Caspase 3 and the decreased of Bcl-2. To further investigate the roles of PP2A and Akt in regulating apoptosis of hepatocytes after BD, we cultivated human liver cell line L02 with serum deprivation and hypoxia, to simulate the ischemic and hypoxic conditions of hepatocytes in DBD. Increased apoptosis and decreased viability were observed during the time in this model. Meanwhile PP2A activity and Akt activity were respectively increased and decreased. Notably, the proportion of Akt phosphorylation at Ser473 decreased, while other known targets of PP2A (p38, JNK and ERK) were not affected in terms of protein levels or phosphorylation. These results suggested that PP2A is involved in apoptotic induction of hepatocytes after brain death by specific suppression of Akt. This discovery was further confirmed with pharmaceutical and genetic methods. Our work implied potential targets for reducing liver cell apoptosis and improving organ donor quality after BD.

Rotenone protects against β-cell apoptosis and attenuates type 1 diabetes mellitus

Abstract

Type 1 diabetes mellitus (T1DM) is caused by pancreatic β-cell dysfunction and apoptosis, with consequent severe insulin deficiency. Thus, β-cell protection may be a primary target in the treatment of T1DM. Evidence has demonstrated that defective mitochondrial function plays an important role in pancreatic β-cell dysfunction and apoptosis; however, the fundamental effect of mitochondrial complex I action on β-cells and T1DM remains unclear. In the current study, the pancreas protective effect of complex I inhibitor rotenone (ROT) and its potential mechanism were assessed in a streptozotocin (STZ)-induced mouse model of T1DM and in cultured mouse pancreatic β-cell line, Min6. ROT treatment exerted a hypoglycemic effect, restored the insulin level, and decreased inflammation and cell apoptosis in the pancreas. In vitro experiments also showed that ROT decreased STZ- and inflammatory cytokines-induced β-cell apoptosis. These protective effects were accompanied by attenuation of reactive oxygen species, increased mitochondrial membrane potential, and upregulation of transcriptional coactivator PPARα coactivator 1α (PGC-1α)-controlled mitochondrial biogenesis. These findings suggest that mitochondrial complex I inhibition may represent a promising strategy for β-cell protection in T1DM.

Integrin-EGFR interaction regulates anoikis resistance in colon cancer cells

Abstract

Anoikis resistance is an essential property of cancer cells that allow the extra-cellular matrix-detached cells to survive in a suspended state in body fluid in order to metastasize and invade to distant organs. It is known that integrins play an important role in anoikis resistance, but detailed mechanisms are not well understood. Here we report that highly metastatic colon cancer cells showed a higher degree of anoikis resistance than the normal intestinal epithelial cells. These anoikis-resistant cancer cells express high-levels of integrin-α2, β1, and activated EGFR in the anchorage-independent state than the anchorage-dependent state. In contrast, normal intestinal epithelial cells failed to elevate these proteins. Interestingly, a higher co-association of EGFR with integrin-α2β1/-α5β1 was observed on the surface of anoikis-resistant cells. Thus, in the absence of extra-cellular matrix, integrins in association with EGFR activates downstream effectors ERK and AKT and suppress Caspase-3 activation to induce anoikis resistance as was confirmed from the gene-ablation and pharmacological inhibitor studies. Interestingly, these anoikis-resistant cancer cells express high-level of cancer stem cell signatures (CD24, CD44, CD133, EpCAM) and pluripotent stem cell markers (OCT-4, SOX-2, Nanog) as well as drug-resistant pumps (ABCG2, MDR1, MRP1). Altogether, our findings unravel the interplay between integrin-α2β1/-α5β1 and EGFR in anoikis resistance and suggest that the resistant cells are cancer initiating or cancer stem cells, which may serve as a promising target to combat metastasis of cancer.

Combination of ERK2 inhibitor VX-11e and voreloxin synergistically enhances anti-proliferative and pro-apoptotic effects in leukemia cells

Abstract

ERK1/2 inhibitors are new promising anticancer drugs. The aim of this study was to investigate the effect of the combination of ERK2 inhibitor VX-11e and voreloxin on MOLM-14, K562, REH and MOLT-4 leukemia cell lines. We found that VX-11e alone and in combination with voreloxin significantly decreased ERK activation in all cell lines tested. To evaluate the interactions of the drugs, cells were treated for 24 h with VX-11e or voreloxin alone and in combination at fixed ratios based on IC50 values. The combinatorial effects of both drugs were synergistic over a wide range of concentrations in MOLM-14, REH and MOLT-4 cell lines. In K562 cells, three effects were found to be additive, one antagonistic and only one synergistic. The results showed that incubation with both VX-11e and voreloxin inhibited the growth of leukemia cells, affected cell cycle and induced apoptosis. Furthermore, the molecular mechanism of these effects might be attributed to an increased expression of p21 and a decreased expression of survivin and NF-κB in all cell lines tested except from K562 cells. In conclusion, combination of VX-11e and voreloxin can exert a synergistic anticancer effect in leukemia cells.

Liver-specific Bid silencing inhibits APAP-induced cell death in mice

Abstract

Acetaminophen (APAP)-induced acute liver failure (ALF) is a life-threatening disease with only a few treatment options available. Though extensive research has been conducted for more than 40 years, the underlying pathomechanisms are not completely understood. Here, we studied as to whether APAP-induced ALF can be prevented in mice by silencing the BH3-interacting domain death agonist (Bid) as a potential key player in APAP pathology. For silencing Bid expression in mice, siRNABid was formulated with the liver-specific siRNA delivery system DBTC and administered 48 h prior to APAP exposure. Mice which were pre-treated with HEPES (vehicleHEPES) and siRNALuci served as siRNA controls. Hepatic pathology was assessed by in vivo fluorescence microscopy, molecular biology, histology and laboratory analysis 6 h after APAP or PBS exposure. Application of siRNABid caused a significant decrease of mRNA and protein expression of Bid in APAP-exposed mice. Off-targets, such as cytochrome P450 2E1 and glutathione, which are known to be consumed under APAP intoxication, were comparably reduced in all APAP-exposed mice, underlining the specificity of Bid silencing. In APAP-exposed mice non-sterile inflammation with leukocyte infiltration and perfusion failure remained almost unaffected by Bid silencing. However, the Bid silencing reduced hepatocellular damage, evident by a remarkable decrease of DNA fragmented cells in APAP-exposed mice. In these mice, the expression of the pro-apoptotic protein Bax, which recently gained importance in the cell death pathway of regulated necrosis, was also significantly reduced, in line with a decrease in both, necrotic liver tissue and plasma transaminase activities. In addition, plasma levels of HMGB1, a marker of sterile inflammation, were significantly diminished. In conclusion, the liver-specific silencing of Bid expression did not protect APAP-exposed mice from microcirculatory dysfunction, but markedly protected the liver from necrotic cell death and in consequence from sterile inflammation. The study contributes to the understanding of the molecular mechanism of the APAP-induced pathogenic pathway by strengthening the importance of Bid and Bid silencing associated effects.

TNF-α-elicited miR-29b potentiates resistance to apoptosis in peripheral blood monocytes from patients with rheumatoid arthritis

Abstract

CD14-positive monocytes from patients with rheumatoid arthritis (RA) are more resistant to apoptosis, which promotes their persistence at the inflammatory site and thereby contributes crucially to immunopathology. We sought to elucidate one mechanism underlying this unique pathogenesis: resistance to apoptosis and the potential involvement of miR-29b in this process. CD14-positive peripheral blood monocytes (PBMs) from RA patients were observed to be resistant to spontaneous apoptosis compared to PBMs from healthy volunteers. Intriguingly, expression of miR-29b was significantly upregulated in PBMs from RA patients than those from healthy volunteers, and this upregulation was correlated with RA disease activity. Functionally, forced expression of the exogenous miR-29b in CD14-positive Ctrl PBMs conferred resistance to spontaneous apoptosis and Fas-induced death, thereafter enhancing the production of major proinflammatory cytokines in there cells. Following identification of the potential miR-29b target transcripts using bioinformatic algorithms, we showed that miR-29b could directly bind to the 3′-UTR of the high-mobility group box-containing protein 1 (HBP1) and inhibited its transcription in PBMs. Importantly, stable expression of the exogenous HBP1 in differentiated THP-1 monocytes effectively abolished miR-29b-elicited resistance to Fas-induced apoptosis. Finally, among patients with RA and good clinical responses to immunotherapy, expression levels of miR-29b were significantly compromised in those treated with infliximab (a TNF-α inhibitor) but not in those treated with tocilizumab (a humanized mAb against the IL-6 receptor), pointing to a potential association between miR-29b activation and TNF-α induction. The available data collectively suggest that TNF-α-elicited miR-29b potentiates resistance to apoptosis in PBMs from RA patients via inhibition of HBP1 signaling, and testing patients for miR-29b/HBP1 expression ratios may provide more accurate prognostic information and could influence the recommended course of immunotherapy.

Two-factor specification of apoptosis: TGF-β signaling acts cooperatively with ecdysone signaling to induce cell- and stage-specific apoptosis of larval neurons during metamorphosis in Drosophila melanogaster

Abstract

Developmentally regulated programmed cell death (PCD) is one of the key cellular events for precise controlling of neuronal population during postembryonic development of the central nervous system. Previously we have shown that a group of corazonin-producing peptidergic neurons (vCrz) undergo apoptosis in response to ecdysone signaling via ecdysone receptor (EcR)-B isoforms and Ultraspiracle during early phase of metamorphosis. Further utilizing genetic, transgenic, and mosaic analyses, we have found that TGF-β signaling mediated by a glia-produced ligand, Myoglianin, type-I receptor Baboon (particularly Babo-A isoform) and dSmad2, is also required autonomously for PCD of the vCrz neurons. Our studies show that TGF-β signaling is not acting epistatically to EcR or vice versa. We also show that ectopic expression of a constitutively active phosphomimetic form of dSmad2 (dSmad2PM) is capable of inducing premature death of vCrz neurons in larva but not other larval neurons. Intriguingly, the dSmad2PM-mediated killing is completely suppressed by coexpression of a dominant-negative form of EcR (EcRDN), suggesting that EcR function is required for the proapoptotic dSmad2PM function. Based on these data, we suggest that TGF-β and ecdysone signaling pathways act cooperatively to induce vCrz neuronal PCD. We propose that this type of two-factor authentication is a key developmental strategy to ensure the timely PCD of specific larval neurons during metamorphosis.

MAGI1 mediates tumor metastasis through c-Myb/miR-520h/MAGI1 signaling pathway in renal cell carcinoma

Abstract

Renal cell carcinoma (RCC) is the third most common urological cancer with highly metastatic potential. MAGI1 plays an important role in stabilization of the adherens junctions and has been confirmed to suppress invasiveness and metastasis in multiple cancers in clinic. However, its expression and anti-metastatic ability in RCC are still unclear. In this study, we demonstrated that MAGI1 was markedly decreased in the RCC and indicated poor survival. Furthermore, we found that MAGI1 suppressed the invasion and migration of human RCC cells. Mechanistic investigations revealed that MAGI1 stabilized the PTEN/MAGI1/β-catenin complex to inhibit β-catenin signaling pathway. Moreover, MAGI1 was targeted by miR-520h which was transcriptionally activated by c-Myb. Collectively, our findings suggested that MAGI1mediated tumor metastasis through c-Myb/miR-520h/MAGI1 signaling pathway in RCC.

Defining the role of cytoskeletal components in the formation of apoptopodia and apoptotic bodies during apoptosis

Abstract

During apoptosis, dying cells undergo dynamic morphological changes that ultimately lead to their disassembly into fragments called apoptotic bodies (ApoBDs). Reorganisation of the cytoskeletal structures is key in driving various apoptotic morphologies, including the loss of cell adhesion and membrane bleb formation. However, whether cytoskeletal components are also involved in morphological changes that occur later during apoptosis, such as the recently described generation of thin apoptotic membrane protrusions called apoptopodia and subsequent ApoBD formation, is not well defined. Through monitoring the progression of apoptosis by confocal microscopy, specifically focusing on the apoptopodia formation step, we characterised the presence of F-actin and microtubules in a subset of apoptopodia generated by T cells and monocytes. Interestingly, targeting actin polymerisation and microtubule assembly pharmacologically had no major effect on apoptopodia formation. These data demonstrate apoptopodia as a novel type of membrane protrusion that could be formed in the absence of actin polymerisation and microtubule assembly.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate