A role of the Trx-G complex in Cid/CENP-A deposition at Drosophila melanogaster centromeresAbstract
Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation. Despite the many components that are known to cooperate in centromere function, the complete network of factors involved in CENP-A recruitment remains to be defined. In Drosophila, the Trx-G proteins localize along the heterochromatin with specific patterns and some of them localize to the centromeres of all chromosomes. Here, we show that the Trx, Ash1, and CBP proteins are required for the correct chromosome segregation and that Ash1 and CBP mediate for Cid/CENP-A recruitment at centromeres through post-translational histone modifications. We found that centromeric H3 histone is consistently acetylated in K27 by CBP and that nej and ash1 silencing respectively causes a decrease in H3K27 acetylation and H3K4 methylation along with an impairment of Cid loading.
|
DNA transposon invasion and microsatellite accumulation guide W chromosome differentiation in a Neotropical fish genomeAbstract
Sex chromosome differentiation is subject to independent evolutionary processes among different lineages. The accumulation of repetitive DNAs and consequent crossing-over restriction guide the origin of the heteromorphic sex chromosome region. Several Neotropical fish species have emerged as interesting models for understanding evolution and genome diversity, although knowledge of their genomes is scarce. Here, we investigate the content of repetitive DNAs between males and females of Apareiodon sp. based on large-scale genomic data focusing on W sex chromosome differentiation. In Apareiodon, females are the heterogametic sex (ZW) and males are the homogametic sex (ZZ). The genome size estimate for Apareiodon was 1.2 Gb (with ~ 42× and ~ 47× coverage for males and females, respectively). In Apareiodon sp., approximately 36% of the genome was composed of repetitive DNAs and transposable elements (TEs) were the most abundant class. Read coverage analysis revealed different amounts of repetitive DNAs in males and females. The female-enriched clusters were located on the W sex chromosome and were mostly composed of microsatellite expansions and DNA transposons. Landscape analysis of TE contents demonstrated two major waves of invasions of TEs in the Apareiodon genome. Estimation of TE insertion times correlated with in situ locations permitted the inference that helitron, Tc1-mariner, and CMC EnSpm DNA transposons accumulated repeated copies during W chromosome differentiation between 20 and 12 million years ago. DNA transposons and microsatellite expansions appeared to be major players in W chromosome differentiation and to guide modifications in the genome content of the heteromorphic sex chromosomes.
|
The novel function of the Ph1 gene to differentiate homologs from homoeologs evolved in Triticum turgidum ssp. dicoccoides via a dramatic meiosis-specific increase in the expression of the 5B copy of the C-Ph1 geneAbstract
The Ph1 gene is the principal regulator of homoeologous chromosome pairing control (HECP) that ensures the diploid-like meiotic chromosome pairing behavior of polyploid wheat. The HECP control was speculated to have evolved after the first event of polyploidization. With the objective to accurately understand the evolution of the HECP control, wild emmer wheat accessions previously known to differ for HECP control were characterized for the structure and expression of the candidate Ph1 gene, C-Ph1. The C-TdPh1-5A and 5B gene copies of emmer wheat showed 98 and 99% DNA sequence similarity respectively with the corresponding hexaploid wheat copies. Further, the C-TdPh1-5B carried the C-Ph1-5B specific structural changes and transcribed three splice variants as observed in the hexaploid wheat. Further, single nucleotide changes differentiating accessions varying for HECP control were identified. Analyzed by quantitative expression analysis, the wild emmer accessions with HECP control showed ~ 10,000-fold higher transcript abundance of the C-TdPh1-5B copy during prophase-I compared to accessions lacking the control. Differential transcriptional regulation of C-TdPh1-5B splice variants further revealed that C-Ph1-5Balt1 variant is mainly responsible for differential accumulation of C-Ph1-5B copy in accessions with HECP control. Taken together, these results showed that the HECP control evolved via transcriptional regulation of splice variants during meiosis.
|
Activity and inactivity of moth sex chromosomes in somatic and meiotic cellsAbstract
Moths and butterflies (Lepidoptera) are the most species-rich group of animals with female heterogamety, females mostly having a WZ, males a ZZ sex chromosome constitution. We studied chromatin conformation, activity, and inactivity of the sex chromosomes in the flour moth Ephestia kuehniella and the silkworm Bombyx mori, using immunostaining with anti-H3K9me2/3, anti-RNA polymerase II, and fluoro-uridine (FU) labelling of nascent transcripts, with conventional widefield fluorescence microscopy and ‘spatial structured illumination microscopy’ (3D-SIM). The Z chromosome is euchromatic in somatic cells and throughout meiosis. It is transcriptionally active in somatic cells and in the postpachaytene stage of meiosis. The W chromosome in contrast is heterochromatic in somatic cells as well as in meiotic cells at pachytene, but euchromatic and transcriptionally active like all other chromosomes at postpachytene. As the W chromosomes are apparently devoid of protein-coding genes, their transcripts must be non-coding. We found no indication of ‘meiotic sex chromosome inactivation’ (MSCI) in the two species.
|
“Doubled-haploid” allohexaploid Brassica lines lose fertility and viability and accumulate genetic variation due to genomic instabilityAbstract
Microspore culture stimulates immature pollen grains to develop into plants via tissue culture and is used routinely in many crop species to produce “doubled haploids”: homozygous, true-breeding lines. However, microspore culture is also often used on material that does not have stable meiosis, such as interspecific hybrids. In this case, the resulting progeny may lose their “doubled haploid” homozygous status as a result of chromosome missegregation and homoeologous exchanges. However, little is known about the frequency of these effects. We assessed fertility, meiosis and genetic variability in self-pollinated progeny sets (the MDL2 population) resulting from first-generation plants (the MDL1 population) derived from microspores of a near-allohexaploid interspecific hybrid from the cross (Brassica napus × B. carinata) × B. juncea. Allelic inheritance and copy number variation were predicted using single nucleotide polymorphism marker data from the Illumina Infinium 60K Brassica array. Seed fertility and viability decreased substantially from the MDL1 to the MDL2 generation. In the MDL2 population, 87% of individuals differed genetically from their MDL1 parent. These genetic differences resulted from novel homoeologous exchanges between chromosomes, chromosome loss and gain, and segregation and instability of pre-existing karyotype abnormalities. Novel karyotype change was extremely common, with 2.2 new variants observed per MDL2 individual. Significant differences between progeny sets in the number of novel genetic variants were also observed. Meiotic instability clearly has the potential to dramatically change karyotypes (often without detectable effects on the presence or absence of alleles) in putatively homozygous, microspore-derived lines, resulting in loss of fertility and viability.
|
Addition to Special Issue on Recent advances in meiosis from DNA replication to chromosome segregation" edited by Valérie Borde and Francesca Cole, co-edited by Paula Cohen and Scott Keeney" |
Epigenetic changes in mammalian gametes throughout their lifetime: the four seasons metaphorAbstract
The ability to reproduce is a major trait of living organisms. This ability is carried out by specialized reproductive cells—gametes. In mammals, gametes develop through a unique developmental pathway. Extensive changes in the epigenome of gametes occur during embryonic development. With birth, gametes continue to mature and develop until puberty. This growth process is accompanied by further epigenetic changes. When gametes mature, they reside within specialized organs—the gonads—and are exposed to both internal and external signals. The gametes’ epigenome reacts to these signals, and epigenetic changes which occur can alter gene expression and the ability of the cells to go through the cell cycle. The epigenome also ages and may be one of the key players in gamete aging, which, at least for females, occurs relatively early in life. The journey gametes undertake throughout the life of the organism is thus full of epigenetic changes. In this review, we depict these changes and the mechanisms involved in them. We focus on four stages of gamete development: gametes in embryonic development, during puberty and until sexual maturity, in adulthood, and during the process of aging. In each stage, we focus on one aspect of epigenetic changes and discuss it in more detail. These four stages include many different molecular players, lots of enzymatic activity, and abrupt changes. By this, these stages resemble the four seasons of the year. Thus, we describe epigenetic changes in gametes as changes throughout four seasons of life.
|
Srs2 helicase prevents the formation of toxic DNA damage during late prophase I of yeast meiosisAbstract
Proper repair of double-strand breaks (DSBs) is key to ensure proper chromosome segregation. In this study, we found that the deletion of the SRS2 gene, which encodes a DNA helicase necessary for the control of homologous recombination, induces aberrant chromosome segregation during budding yeast meiosis. This abnormal chromosome segregation in srs2 cells accompanies the formation of a novel DNA damage induced during late meiotic prophase I. The damage may contain long stretches of single-stranded DNAs (ssDNAs), which lead to aggregate formation of a ssDNA binding protein, RPA, and a RecA homolog, Rad51, as well as other recombination proteins inside of the nuclei, but not that of a meiosis-specific Dmc1. The Rad51 aggregate formation in the srs2 mutant depends on the initiation of meiotic recombination and occurs in the absence of chromosome segregation. Importantly, as an early recombination intermediate, we detected a thin bridge of Rad51 between two Rad51 foci in the srs2 mutant, which is rarely seen in wild type. These might be cytological manifestation of the connection of two DSB ends and/or multi-invasion. The DNA damage with Rad51 aggregates in the srs2 mutant is passed through anaphases I and II, suggesting the absence of DNA damage-induced cell cycle arrest after the pachytene stage. We propose that Srs2 helicase resolves early protein-DNA recombination intermediates to suppress the formation of aberrant lethal DNA damage during late prophase I.
|
Maternal obesity enhances oocyte chromosome abnormalities associated with agingAbstract
Obesity is increasing globally, and maternal obesity has adverse effects on pregnancy outcomes and the long-term health of offspring. Maternal obesity has been associated with pregnancy failure through impaired oogenesis and embryogenesis. However, whether maternal obesity causes chromosome abnormalities in oocytes has remained unclear. Here we show that chromosome abnormalities are increased in the oocytes of obese mice fed a high-fat diet and identify weakened sister-chromatid cohesion as the likely cause. Numbers of full-grown follicles retrieved from obese mice were the same as controls and the efficiency of in vitro oocyte maturation remained high. However, chromosome abnormalities presenting in both metaphase-I and metaphase-II were elevated, most prominently the premature separation of sister chromatids. Weakened sister-chromatid cohesion in oocytes from obese mice was manifested both as the terminalization of chiasmata in metaphase-I and as increased separation of sister centromeres in metaphase II. Obesity-associated abnormalities were elevated in older mice implying that maternal obesity exacerbates the deterioration of cohesion seen with advancing age.
|
ATR function is indispensable to allow proper mammalian follicle developmentAbstract
Mammalian female fertility relies on the proper development of follicles. Right after birth in the mouse, oocytes associate with somatic ovarian cells to form follicles. These follicles grow during the adult lifetime to produce viable gametes. In this study, we analyzed the role of the ATM and rad3-related (ATR) kinase in mouse oogenesis and folliculogenesis using a hypomorphic mutation of the Atr gene (Murga et al. 2009). Female mice homozygotes for this allele have been reported to be sterile. Our data show that female meiotic prophase is not grossly altered when ATR levels are reduced. However, follicle development is substantially compromised, since Atr mutant ovaries present a decrease of growing follicles. Comprehensive analysis of follicular cell death and proliferation suggest that wild-type levels of ATR are required to achieve optimal follicular development. Altogether, these findings suggest that reduced ATR expression causes sterility due to defects in follicular progression rather than in meiotic recombination. We discuss the implications of these findings for the use of ATR inhibitors such as anti-cancer drugs and its possible side-effects on female fertility.
|
ΩτοΡινοΛαρυγγολόγος Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,
Translate
Ετικέτες
Τετάρτη 13 Νοεμβρίου 2019
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
10:03 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis,
Telephone consultation 11855 int 1193
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Αρχειοθήκη ιστολογίου
-
►
2023
(278)
- ► Φεβρουαρίου (139)
- ► Ιανουαρίου (139)
-
►
2022
(1962)
- ► Δεκεμβρίου (107)
- ► Σεπτεμβρίου (158)
- ► Φεβρουαρίου (165)
- ► Ιανουαρίου (163)
-
►
2021
(3614)
- ► Δεκεμβρίου (152)
- ► Σεπτεμβρίου (271)
- ► Φεβρουαρίου (64)
- ► Ιανουαρίου (357)
-
►
2020
(3279)
- ► Δεκεμβρίου (396)
- ► Σεπτεμβρίου (157)
- ► Φεβρουαρίου (382)
- ► Ιανουαρίου (84)
-
▼
2019
(11718)
- ► Δεκεμβρίου (265)
-
▼
Νοεμβρίου
(430)
- Ξηρή Μύτη
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Mechanistic insight of cyclin-dependent kinase 5...
- Developing Your Career as a Nurse Educator: Try ...
- Renal damage in primary aldosteronism: a system...
- The role of cannabis in treating anxiety: an up...
- Editorial: Body composition measurements in old...
- Editorial: Surgical advancements and innovation...
- Papillary thyroid microcarcinoma: optimal manag...
- Measuring outcomes in complicated intra-abdomin...
- Is the Use of Intraoperative Corticosteroids Har...
- Is the Use of Intraoperative Corticosteroids Har...
- Genetic and epigenetic factors interacting with...
- Novel therapeutic approaches in chronic kidney d...
- Introduction, vasculitis 2020, A monogenic auto...
- Asthma: a modifiable disease on a crossroadNo ab...
- Functional outcomes after selective dorsal rhizo...
- Stabilizing the Metzler matrices with applicatio...
- Edentulous left maxillary ridge ulcerative swell...
- Microbe-mediated sustainable bio-recovery of gol...
- Extradition and Mental Health in UK Law Abstrac...
- The bacteria-positive proportion in the disc tis...
- Surface deformation processes in the Carmel Faul...
- Epistemology and the History of Science: The Pro...
- Watch out! Insecure relationships affect vigilan...
- Combination Treatment with an Antibody–Drug Con...
- Clean technologies and policies for sustainable ...
- Central aortic blood pressure estimation in chil...
- Analysis of morphometric and somatoscopic traits...
- Lung and diaphragm-protective ventilation: setti...
- Ultrasonography greatly improves the ability of ...
- Regulation of allergic inflammation by dendritic...
- Effect of Low-Level LASER Therapy on Wound Recove...
- Augmented reality technology could be an alterna...
- Evaluation of the potential risk of benign parox...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- We thank You, God, for the food we eat; We thank y...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Biological Sciences, ,
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Sympathetic Nerve Traffic and Arterial Baror...
- 1. Epilepsy Behav. 2019 Nov 22;102:106681. do...
- Pharmaceutics, Vol. 11, Pages 630: Embedde...
- International Journal of Molecular Sciences,
- Antioxidants, Vol. 8, Pages 588: Modulatio...
- Profiling Ubiquitin and Ubiquitin-like Depen...
- Pediatric polysomnography-A review of indica...
- Poor Correlation of Oral Swabs with Esophage...
- An Invited Commentary on "Laparoscopic repai...
- Aberrant activation of cyclin A-CDK induces ...
- Olfactory dysfunction in patients undergoing...
- Cytological diagnosis of amyloidosis present...
- Symptomatic Post-Radiosurgery Intratumoral H...
- Awareness and practice of breast self examinatio...
- Gadolinium Retention as a Safety Signal: Experie...
- Free-living Evaluation of Laboratory-based Activ...
- Indian Journal of Nuclear Medicine 2019 34(5):1-2...
- Docosahexaenoic acid varies in rat skeletal musc...
- Clinical outcomes of new algorithm for diagnosis...
- A system approach on safe emergency evacuation i...
- Progressive histomorphometric analysis of the l...
- Editorial for Nigerian Journal of Health Science...
- Impact of Clinical Specialty Setting and Geogra...
- UCD School of Medicine, Summer Student Research ...
- State of the globe: Antimicrobial resistance: Ne...
- Αnesthesiology, emergency medicine and in...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- We'd never know how high we are, till we are calle...
- He whose honor is rooted in popular approval must,...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Tumors of the conjunctiva and cornea,Carol L Shi...
- Future of 5-fluorouracil in cancer therapeutics,...
- Size, site, and signaling: Three attributes of e...
- Role of nanotechnology in dentistry: Systematic ...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Special Report, Coronary CT Angio...
- Ψευδάργυρος και ανοσογήρανση
- Immunotherapy and its advances in the management...
- Role of Ayurveda in end-of-life careMandip Goyal...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- PeerJ Computer Science
- Many continuous variables should be analyzed...
- Manganese catalyzed ß‐methylation of alcohol...
- Latest Results for Review of Philosophy and P...
- Sialolipoma of Parotid Gland a Rare Histolog...
- Application of External Force Regulates the ...
- A Preprocess Method of External Disturbance S...
- ► Σεπτεμβρίου (545)
- ► Φεβρουαρίου (1143)
- ► Ιανουαρίου (744)
-
►
2017
(2)
- ► Φεβρουαρίου (1)
- ► Ιανουαρίου (1)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου