Translate

Τρίτη 14 Μαΐου 2019

Authors: Rydzewska, Marta / Michalak, Justyna / Bossowska, Anna / Chen, Shu / Black, Sarah / Powell, Michael / Furmaniak, Jadwiga / Rees Smith, Bernard / Bossowski, Artur
Read Full Article
 

Analysis of diabetes-associated autoantibodies in children and adolescents with autoimmune thyroid diseases

Marta Rydzewska / Justyna Michalak / Anna Bossowska / Shu Chen / Sarah Black / Michael Powell / Jadwiga Furmaniak / Bernard Rees Smith / Artur Bossowski
Published Online: 2019-03-23 | DOI: https://doi.org/10.1515/jpem-2018-0367

Abstract

Background

Zinc transporter 8 autoantibodies (ZnT8Abs) together with glutamic acid decarboxylase autoantibodies (GADAbs), insulinoma antigen 2 autoantibodies (IA-2Abs) and insulin autoantibodies (IAbs) are markers of type 1 diabetes mellitus (T1DM). We studied the prevalence of ZnT8Ab in children with autoimmune thyroid diseases (AITDs) to assess the association of AITDs and T1DM at the serological level.

Methods

The study groups consisted of 44 children with Graves’ disease (GD), 65 children with Hashimoto’s thyroiditis (HT), 199 children with T1DM with or without AITDs and 58 control children. ZnT8Ab, GADAb, IA-2Ab, IAb, 21-hydroxylase autoantibodies (21-OHAbs) and acetylcholine receptor autoantibodies (AChRAbs) were measured.

Results

ZnT8Abs were found in 4/44 (9.1%) patients with GD, and 4/44 (9.1%) patients with GD were positive for GADAb. Of the 65 HT patients, six (9.2%) were positive for ZnT8Ab, while four (6.2%) were positive for GADAb. In the T1DM group, 128/199 (64%) of the patients were positive for ZnT8Ab, 133/199 (67%) for GADAb and 109/199 (55%) for IA-2Ab. One GD patient and one HT patient were positive for all the four diabetes-associated autoantibodies. Two HT patients were positive for three diabetes autoantibodies. Two GD (4.5%) and five HT (7.7%) patients were positive for 21-OHAb only. None of the patients had AChRAb. In the control group, 2/58 (3.4%) were positive for GADAb and 2/58 (3.4%) were positive for ZnT8Ab.

Conclusions

Diabetes-associated autoantibodies including ZnT8Ab were found in children and adolescents with GD and HT.
Keywords: autoantibodiesautoimmune thyroid disease (AITD)Graves’ diseaseHashimoto’s thyroiditistype 1 diabetes mellituszinc transporter 8 autoantibodies (ZnT8Ab)

References

  • 1.
    Roohani N, Hurrell R, Kelishadi R, Schulin R. Zinc and its importance for human health: an integrative review. J Res Med Sci 2013;18:144–57.PubMedGoogle Scholar
  • 2.
    Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev 1993;73:79–118.CrossrefPubMedGoogle Scholar
  • 3.
    Maret W. Zinc biochemistry: from a single zinc enzyme to a key element of life. Adv Nutr 2013;4:82–91.PubMedCrossrefGoogle Scholar
  • 4.
    Dawidson WH, Wenzlau MJ, O’Brien MR. Zinc transporter 8 (ZnT8) and beta cell function. Trends Endocrinol Metab 2014;25:415–24.CrossrefPubMedGoogle Scholar
  • 5.
    Murgia C, Devirgiliis C, Mancini E, Donadel G, Zalewski P, et al. Diabetes-linked zinc transporter ZnT8 is a homodimeric protein expressed by distinct rodent endocrine cell types in the pancreas and other glands. Nutr Metab Cardiovasc Dis 2009;19:431–9.PubMedCrossrefGoogle Scholar
  • 6.
    Huang L, Tepaamorndech S. The SLC30 family of zinc transporters – a review of current understanding of their biological and pathophysiological roles. Mol Aspects Med 2013;34:548–60.PubMedCrossrefGoogle Scholar
  • 7.
    Pound LD, Sarkar SA, Benninger RK, Wang Y, Suwanichkul A, et al. Deletion of the mouse Slc30a8 gene encoding zinc transporter-8 results in impaired insulin secretion. Biochem J 2009;421:371–6.CrossrefPubMedGoogle Scholar
  • 8.
    Kawasaki E. Type 1 diabetes and autoimmunity. Clin Pediatr Endocrinol 2014;23:99–105.PubMedCrossrefGoogle Scholar
  • 9.
    Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, et al. The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007;104:17040–5.CrossrefGoogle Scholar
  • 10.
    Wenzlau JM, Frisch LM, Gardner TJ, Sarkar S, Hutton JC, et al. Novel antigens in type 1 diabetes: the importance of ZnT8. Curr Diab Rep 2009;9:105–12.PubMedCrossrefGoogle Scholar
  • 11.
    Han S, Donelan W, Wang H, Reeves W, Yang LJ. Novel autoantigens in type 1 diabetes. Am J Transl Res 2013;5:379–92.PubMedGoogle Scholar
  • 12.
    Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, et al. Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 1983;222:1337–9.CrossrefPubMedGoogle Scholar
  • 13.
    Baekkeskov S, Aanstoot HJ, Christgau S, Reetz A, Solimena M, et al. Identification of the 64K autoantigen in insulin-dependent diabetes as the GABA-synthesizing enzyme glutamic acid decarboxylase. Nature 1990;347:151–6.CrossrefPubMedGoogle Scholar
  • 14.
    Bonifacio E, Lampasona V, Bingley PJ. IA-2 (islet cell antigen 512) is the primary target of humoral autoimmunity against type 1 diabetes-associated tyrosine phosphatase autoantigens. J Immunol 1998;161:2648–54.PubMedGoogle Scholar
  • 15.
    Cappa M, Bizzarri C, Crea F. Autoimmune thyroid diseases in children. J Thyroid Res 2011;2011:675703.Google Scholar
  • 16.
    Bossowski AT, Reddy V, Perry LA, Johnston LB, Banerjee K, et al. Clinical and endocrine features and long-term outcome of Graves’ disease in early childhood. J Endocrinol Invest 2007;30:388–92.PubMedCrossrefGoogle Scholar
  • 17.
    Bossowski A, Harasymczuk J, Moniuszko A, Bossowska A, Hilczer M, et al. Cytometric evaluation of intracellular INF-y and IL-4 levels in thyroid follicular cells from patients with autoimmune thyroid diseases. Thyroid Res 2011;4:13.CrossrefGoogle Scholar
  • 18.
    Barker JM. Clinical review: type 1 diabetes-associated autoimmunity: natural history, genetic associations, and screening. J Clin Endocrinol Metab 2006;91:1210–7.CrossrefPubMedGoogle Scholar
  • 19.
    Laberge G, Mailloux CM, Gowan K, Holland P, Bennett DC, et al. Early disease onset and increased risk of other autoimmune diseases in familial generalized vitiligo. Pigment Cell Res 2005;18:300–5.CrossrefPubMedGoogle Scholar
  • 20.
    Antonelli A, Ferrari SM, Corrado A, Di Domenicantonio A, Fallahi P. Autoimmune thyroid disorders. Autoimmun Rev 2015;14:174–80.PubMedCrossrefGoogle Scholar
  • 21.
    Jenkins RC, Weetman AP. Disease associations with autoimmune thyroid disease. Thyroid 2002;12:977–88.CrossrefPubMedGoogle Scholar
  • 22.
    Betterle C, Presotto F. Autoimmune polyendocrine syndromes (APS) or multiple autoimmune syndromes (MAS). In: Walker S, Jara LJ, editors. Handbook of systemic autoimmune diseases, endocrine manifestations of systemic autoimmune diseases. Amsterdam: Elsevier, 2008:135–48.Google Scholar
  • 23.
    Somers EC, Thomas SL, Smeeth L, Hall AJ. Are individuals with an autoimmune disease at higher risk of a second autoimmune disorder? Am J Epidemiol 2009;169:749–55.PubMedCrossrefGoogle Scholar
  • 24.
    Fallahi P, Ferrari SM, Ruffilli I, Elia G, Biricotti M, et al. The association of other autoimmune diseases in patients with autoimmune thyroiditis: review of the literature and report of a large series of patients. Autoimmun Rev 2016;15:1125–8.CrossrefPubMedGoogle Scholar
  • 25.
    Warncke K, Frohlich-Reiterer EE, Thon A, Hofer SE, Wiemann D, et al. Polyendocrinopathy in children, adolescents, and young adults with type 1 diabetes: a multicenter analysis of 28,671 patients from the German/Austrian DPV-Wiss database. Diabetes Care 2010;33:2010–2.CrossrefGoogle Scholar
  • 26.
    American Diabetes Association. Standards of medical care in diabetes – 2014. Diabetes Care 2014;37:14–80.Google Scholar
  • 27.
    Petruzelkova L, Ananieva-Jordanova R, Vcelakova J, Vesely Z, Stechova K, et al. The dynamic changes of zinc transporter 8 autoantibodies in Czech children from the onset of type 1 diabetes mellitus. Diabet Med 2014;31:165–71.PubMedCrossrefGoogle Scholar
  • 28.
    Brooking H, Ananieva-Jordanova R, Arnold C, Amoroso M, Powell M, et al. A sensitive non-isotopic assay for GAD65 autoantibodies. Clin Chim Acta 2003;331:55–9.CrossrefPubMedGoogle Scholar
  • 29.
    Masuda M, Powell M, Chen S, Beer C, Fichna P, et al. Autoantibodies to IA-2 in insulin-dependent diabetes mellitus. Measurements with a new immunoprecipitation assay. Clin Chim Acta 2000;291:53–66.CrossrefPubMedGoogle Scholar
  • 30.
    Tanaka H, Perez MS, Powell M, Sanders JF, Sawicka J, et al. Steroid 21-hydroxylase autoantibodies: measurements with a new immunoprecipitation assay. J Clin Endocrinol Metab 1997;82:1440–6.PubMedGoogle Scholar
  • 31.
    Levin L, Tomer Y. The etiology of autoimmune diabetes and thyroiditis: evidence for common genetic susceptibility. Autoimmun Rev 2003;2:377–86.PubMedCrossrefGoogle Scholar
  • 32.
    Kontiainen S, Schlenzka A, Koskimies S, Rilva A, Maenpaa J. Autoantibodies and autoimmune diseases in young diabetics. Diabetes Res 1990;13:151–6.PubMedGoogle Scholar
  • 33.
    Kawasaki E, Abiru N, Yano M, Uotani S, Matsumoto K, et al. Autoantibodies to glutamic acid decarboxylase in patients with autoimmune thyroid disease: relation to competitive insulin autoantibodies. J Autoimmun 1995;8:633–43.PubMedCrossrefGoogle Scholar
  • 34.
    Moriguchi M, Noso S, Kawabata Y, Yamauchi T, Harada T, et al. Clinical and genetic characteristics of patients with autoimmune thyroid disease with antiislet autoimmunity. Metabolism 2011;60:761–6.CrossrefGoogle Scholar
  • 35.
    Marwaha RK, Garg MK, Tandon N, Kanwar R, Narang A, et al. Glutamic acid decarboxylase (anti-GAD) and tissue transglutaminase (anti-TTG) antibodies in patients with thyroid autoimmunity. Indian J Med Res 2013;137:82–6.PubMedGoogle Scholar
  • 36.
    Larizza D, De Amici M, Klersy C, Albanesi M, Albertini R, et al. Anti-zinc transporter protein 8 antibody testing is not informative in routine prediabetes screening in young patients with autoimmune thyroiditis and celiac disease. Horm Res Paediatr 2016;86:100–5.CrossrefPubMedGoogle Scholar
  • 37.
    Ziegler AG, Rewers M, Simell O, Simell T, Lempainen J, et al. Seroconversion to multiple islet autoantibodies and risk of progression to diabetes in children. JAMA 2013;309:2473–9.CrossrefPubMedGoogle Scholar
  • 38.
    Insel RA, Dunne JL, Atkinson MA, Chiang JL, Dabelea D, et al. Staging presymptomatic type 1 diabetes: a scientific statement of JDRF, the Endocrine Society, and the American Diabetes Association. Diabetes Care 2015;38:1964–74.PubMedCrossrefGoogle Scholar
  • 39.
    Chimienti F, Devergnas S, Favier A, Seve M. Identification and cloning of a beta-cell-specific zinc transporter, ZnT-8, localized into insulin secretory granules. Diabetes 2004;53:2330–7.CrossrefPubMedGoogle Scholar
  • 40.
    Gyulkhandanyan AV, Lu H, Lee SC, Bhattacharjee A, Wijesekara N, et al. Investigation of transport mechanisms and regulation of intracellular Zn2ţ in pancreatic alphacells. J Biol Chem 2008;283:10184–97.CrossrefGoogle Scholar
  • 41.
    Smidt K, Pedersen SB, Brock B, Schmitz O, Fisker S, et al. Zinc-transporter genes in human visceral and subcutaneous adipocytes: lean versus obese. Mol Cell Endocriol 2007;264:68–73.CrossrefGoogle Scholar
  • 42.
    Overbeck S, Uciechowski P, Ackland ML, Ford D, Rink L. Intracellular zinc homeostasis in leukocyte subsets is regulated by different expression of zinc exporters ZnT-1 to ZnT-9. J Leukoc Biol 2008;83:368–80.CrossrefPubMedGoogle Scholar
  • 43.
    Jonsdottir B, Andersson C, Carlsson A, Delli A, Forsander G, et al. Thyroid autoimmunity in relation to islet autoantibodies and HLA-DQ genotype in newly diagnosed type 1 diabetes in children and adolescents. Diabetologia 2013;56:1735–42.CrossrefPubMedGoogle Scholar
  • 44.
    Bossowski A, Niklinska W, Gasowska M, Goralczyk A, Polnik D, et al. Identification of zinc transporter ZnT8 in thyroid tissues from children and adolescents with thyroid nodular hyperplasia. ESPE Abstracts 2016:86:P-P1-902.Google Scholar
  • 45.
    Betterle C, Volpato M, Rees Smith B, Furmaniak J, Chen S, et al. II. Adrenal cortex and steroid 21-hydroxylase autoantibodies in children with organ-specific autoimmune diseases: markers of high progression to clinical Addison’s disease. J Clin Endocrinol Metab 1997:82:939–42.PubMedGoogle Scholar
  • 46.
    Małunowicz EM, Romer TE, Urban M, Bossowski A. 11Betahydroxysteroid dehydrogenase type 1 deficiency (‘apparent cortisone reductase deficiency’) in a 6-year-old boy. Horm Res 2003;59:205–10.Google Scholar
  • 47.
    Glowinska-Olszewska B, Michalak J, Luczynski W, Del Pilar Larosa M, Chen S, et al. Organ-specific autoimmunity in relation to clinical characteristics in children with long-lasting type 1 diabetes. J Pediatr Endocrinol Metab 2016;29:647–56.PubMedGoogle Scholar
  • 48.
    Andersson C, Larsson K, Vaziri-Sani F, Lynch K, Carlsson A, et al. The three ZNT8 autoantibody variants together improve the diagnostic sensitivity of childhood and adolescent type 1 diabetes. Autoimmunity 2011;44:394–405.CrossrefPubMedGoogle Scholar
  • 49.
    Glastras SJ, Craig ME, Verge CF, Chan AK, Cusumano JM, et al. The role of autoimmunity at diagnosis of type 1 diabetes in the development of thyroid and celiac disease and microvascular complications. Diabetes Care 2005;28:2170–5.PubMedCrossrefGoogle Scholar
  • 50.
    Reghina AD, Albu A, Petre N, Mihu M, Florea S, et al. Thyroid autoimmunity in 72 children with type 1 diabetes mellitus: relationship with pancreatic autoimmunity and child growth. J Pediatr Endocrinol Metab 2012;25:723–6.PubMedGoogle Scholar
  • 51.
    Kabelitz M, Liesenkotter KP, Stach B, Willgerodt H, Stablein W, et al. The prevalence of anti-thyroid peroxidase antibodies and autoimmune thyroiditis in children and adolescents in an iodine replete area. Eur J Endocrinol 2003;148:301–7.Google Scholar
  • 52.
    Milakovic M, Berg G, Eggertsen R, Lindstedt G, Nystrom E. Screening for thyroid disease of 15–17-year-old schoolchildren in an area with normal iodine intake. J Intern Med 2001;250: 208–12.CrossrefGoogle Scholar
  • 53.
    Perros P, McCrimmon RJ, Shaw G, Frier BM. Frequency of thyroid dysfunction in diabetic patients: value of annual screening. Diabet Med 1995;12:622–7.CrossrefPubMedGoogle Scholar
  • 54.
    Kordonouri O, Klinghammer A, Lang EB, Gruters-Kieslich A, Grabert M, et al. Thyroid autoimmunity in children and adolescents with type 1 diabetes: a multicenter survey. Diabetes Care 2002;25:1346–50.PubMedCrossrefGoogle Scholar

About the article

Corresponding author: Prof. Artur Bossowski, MD, PhD – ETA, ESE, ESC, ESPE member, Department of Pediatrics, Endocrinology and Diabetes with a Cardiology Unit, Medical University of Białystok, ul. Waszyngtona 17, Białystok 15-274, Poland, Phone: +857450-735, Fax:  +(085)7450730

Received: 2018-08-19
Accepted: 2019-02-08
Published Online: 2019-03-23
Published in Print: 2019-04-24

Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: None declared.
Employment or leadership: Shu Chen, Sarah Black, Michael Powell, Jadwiga Furmaniak and Bernard Rees Smith are employees of RSR Ltd. RSR Ltd. is a developer of medical diagnostics including kits for measuring autoantibodies.
Honorarium: None declared.
Competing interests: The funding organization(s) played no role in the study design; in the collection, analysis, and interpretation of data; in the writing of the report; or in the decision to submit the report for publication.

Citation Information: Journal of Pediatric Endocrinology and Metabolism, Volume 32, Issue 4, Pages 355–361, ISSN (Online) 2191-0251, ISSN (Print) 0334-018X, DOI: https://doi.org/10.1515/jpem-2018-0367.
©2019 Walter de Gruyter GmbH, Berlin/Boston.Get Permission


Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate