Translate

Παρασκευή 31 Μαΐου 2019

Tumour Spheroids-on-a-Chip
,
M Ibrahim Khot, Mark A Levenstein, Nikil Kapur, David G Jayne

Journal of Cancer Research and Practice 2019 6(2):55-63

Introduction: Three-dimensional (3D) cell cultures are identified as more accurate and representative models of human cancers than conventional two-dimensional monolayer cell cultures. However, currently established 3D culturing techniques are technically challenging, time- and resource-consuming, and performed using traditional laboratory tissue culturing equipment. In recent years, microfluidics has been introduced into biomedical research, allowing cells and tissues to be cultured in microfabricated devices. The current challenge is to adapt existing 3D cell culturing techniques to microfluidic devices, allowing for the fabrication of low-cost, rapid evaluation devices to facilitate biomedical research and clinical application. The aim of this review was to evaluate microfluidics and 3D cell culture research with particular relevance to oncological research. Methods: Journal articles were acquired from different scientific databases and were identified using specific keywords. Three-Dimensional Cell Culturing Microfluidic Concepts: Various 3D cell culturing microfluidic devices have been designed, based on existing 3D cell culturing methods. This includes non-cell adherent-based devices, matrix-embedding, hanging drop, and droplet-based culturing methods. These platforms facilitate the culturing, treatment, and analysis of 3D spheroids, while simultaneously scaling down traditional experimental requirements. Limitations and Future Perspectives: Beyond superficial analysis, a major drawback in the current scope of 3D cell culturing microfluidic devices is the inability to extract spheroids for examining histology. Polydimethylsiloxane is the preferred material to fabricate devices but may need revision for commercializing microfluidic platforms in the future. Integrating 3D bioprinting and organoid cultures could potentially improve the quality of 3D models in microfluidic devices. Conclusion: 3D spheroids are an effective representation of in vivo cancers and microfluidics has streamlined the culture, treatment, and analysis of 3D models. Considerable improvements have been made in combining the two entities, but further work is required to manufacture 3D cell culturing microfluidic devices on a commercial scale. 

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate