Cultivation Intensity in Combination with Other Ecological Factors as Limiting Ones for the Abundance of Phytopathogenic Fungi on WheatAbstract
In field and laboratory experiments during 2014–2017, we investigated the influence of lower and higher cultivation intensity of wheat and ecological factors (weather—temperature and rainfalls, year) on the occurrence of phytopathogenic fungi on the leaves of winter wheat. The prevailing fungi in those years were Mycosphaerella graminicola (Fuckel) J. Schrott and Pyrenophora tritici-repentis (Died.) Drechsler. Using cluster analysis, we statistically evaluated interrelationships of known factors on the abundance of the fungi on leaf surfaces. Our results showed strongest correlation with Mycosphaerella graminicola and Pyrenophora tritici-repentis abundance to be with lower cultivation intensity and year done by the temperature and the rainfalls. The two pathogens—Puccinia tritici Oerst and Hymenula cerealis Ellis & Everh. occurred only very sparsely in some years and had little positive or negative correlation with named factors. The semi-early and semi-late winter wheat varieties Matchball, Annie, Fakir, and Tobak were used for our experiments. Higher cultivation intensity had protective effect against leaf phytopathogenic fungi.
|
Contrasted Micro-Eukaryotic Diversity Associated with Sphagnum Mosses in Tropical, Subtropical and Temperate Climatic ZonesAbstract
Sphagnum-dominated ecosystem plays major roles as carbon sinks at the global level. Associated microbial communities, in particular, eukaryotes, play significant roles in nutrient fixation and turnover. In order to understand better the ecological processes driven by these organisms, the first step is to characterise these associated organisms. We characterised the taxonomic diversity, and from this, inferred the functional diversity of microeukaryotes in Sphagnum mosses in tropical, subtropical and temperate climatic zones through an environmental DNA diversity metabarcoding survey of the V9 region of the gene coding for the RNA of the small subunit of the ribosomes (SSU rRNA). As microbial processes are strongly driven by temperatures, we hypothesised that saprotrophy would be highest in warm regions, whereas mixotrophy, an optimal strategy in oligotrophic environments, would peak under colder climates. Phylotype richness was higher in tropical and subtropical climatic zones than in the temperate region, mostly due to a higher diversity of animal parasites (i.e. Apicomplexa). Decomposers, and especially opportunistic yeasts and moulds, were more abundant under warmer climates, while mixotrophic organisms were more abundant under temperate climates. The dominance of decomposers, suggesting a higher heterotrophic activity under warmer climates, is coherent with the generally observed faster nutrient cycling at lower latitudes; this phenomenon is likely enhanced by higher inputs of nutrients most probably brought in the system by Metazoa, such as arthropods.
|
Microbiomes of China’s Space Station During Assembly, Integration, and Test OperationsAbstract
Sufficient evidence indicates that orbiting space stations contain diverse microbial populations, which may threaten astronaut health and equipment reliability. Understanding the composition of microbial communities in space stations will facilitate further development of targeted biological safety prevention and maintenance practices. Therefore, this study systematically investigated the microbial community of China’s Space Station (CSS). Air and surface samples from 46 sites on the CSS and Assembly Integration and Test (AIT) center were collected, from which 40 bacteria strains were isolated and identified. Most isolates were cold- and desiccation-resistant and adapted to oligotrophic conditions. Bacillus was the dominant bacterial genus detected by both cultivation-based and Illumina MiSeq amplicon sequencing methods. Microbial contamination on the CSS was correlated with encapsulation staff activities. Analysis by spread plate and qPCR revealed that the CSS surface contained 2.24 × 103–5.47 × 103 CFU/100 cm2 culturable bacteria and 9.32 × 105–5.64 × 106 16S rRNA gene copies/100cm2; BacLight™ analysis revealed that the viable/total bacterial cell ratio was 1.98–13.28%. This is the first study to provide important systematic insights into the microbiome of the CSS during assembly that describes the pre-launch microbial diversity of the space station. Our findings revealed the following. (1) Bacillus strains and staff activities should be considered major concerns for future biological safety. (2) Autotrophic and multi-resistant microbial communities were widespread in the AIT environment. Although harsh cleaning methods reduced the number of microorganisms, stress-resistant strains were not completely removed. (3) Sampling, storage and analytical methods for the space station were thoroughly optimized, and are expected to be applicable to low-biomass environments in general. Microbiology-related future works will follow up to comprehensively understand the changing characteristics of microbial communities in CSS.
|
Very Low Phytoplankton Diversity in a Tropical Saline-Alkaline Lake, with Co-dominance of Arthrospira fusiformis (Cyanobacteria) and Picocystis salinarum (Chlorophyta)Abstract
Lake Dziani Dzaha (Mayotte Island, Indian Ocean) is a tropical thalassohaline lake which geochemical and biological conditions make it a unique aquatic ecosystem considered as a modern analogue of Precambrian environments. In the present study, we focused on the diversity of phytoplanktonic communities, which produce very high and stable biomass (mean2014–2015 = 652 ± 179 μg chlorophyll a L−1). As predicted by classical community ecology paradigms, and as observed in similar environments, a single species is expected to dominate the phytoplanktonic communities. To test this hypothesis, we sampled water column in the deepest part of the lake (18 m) during rainy and dry seasons for two consecutive years. Phytoplanktonic communities were characterized using a combination of metagenomic, microscopy-based and flow cytometry approaches, and we used statistical modeling to identify the environmental factors determining the abundance of dominant organisms. As hypothesized, the overall diversity of the phytoplanktonic communities was very low (15 OTUs), but we observed a co-dominance of two, and not only one, OTUs, viz., Arthrospira fusiformis (Cyanobacteria) and Picocystis salinarum (Chlorophyta). We observed a decrease in the abundance of these co-dominant taxa along the depth profile and identified the adverse environmental factors driving this decline. The functional traits measured on isolated strains of these two taxa (i.e., size, pigment composition, and concentration) are then compared and discussed to explain their capacity to cope with the extreme environmental conditions encountered in the aphotic, anoxic, and sulfidic layers of the water column of Lake Dziani Dzaha.
|
Different Degrees of Niche Differentiation for Bacteria, Fungi, and Myxomycetes Within an Elevational Transect in the German AlpsAbstract
We used direct DNA amplification from soil extracts to analyze microbial communities from an elevational transect in the German Alps by parallel metabarcoding of bacteria (16S rRNA), fungi (ITS2), and myxomycetes (18S rRNA). For the three microbial groups, 5710, 6133, and 261 operational taxonomic units (OTU) were found. For the latter group, we can relate OTUs to barcodes from fruit bodies sampled over a 4-year period. The alpha diversity of myxomycetes was positively correlated with that of bacteria. Vegetation type was found to be the main explanatory parameter for the community composition of all three groups and a substantial species turnover with elevation was observed. Bacteria and fungi display similar community responses, driven by symbiont species and plant substrate quality. Myxamoebae show a more patchy distribution, though still clearly stratified between taxa, which seems to be a response to both structural properties of the habitat and interaction with specific bacterial and fungal taxa. Finally, we report a high number of myxomycete OTUs not represented in a reference database from fructifications, which might represent novel species.
|
Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic ControlsAbstract
In the Arctic, climate changes contribute to enhanced mobilization of organic matter in streams. Microbial extracellular enzymes are important mediators of stream organic matter processing, but limited information is available on enzyme processes in this remote area. Here, we studied the variability of microbial extracellular enzyme activity in high-Arctic fluvial biofilms. We evaluated 12 stream reaches in Northeast Greenland draining areas exhibiting different geomorphological features with contrasting contents of soil organic matter to cover a wide range of environmental conditions. We determined stream nitrogen, phosphorus, and dissolved organic carbon concentrations, quantified algal biomass and bacterial density, and characterized the extracellular enzyme activities involved in catalyzing the cleavage of a range of organic matter compounds (e.g., β-glucosidase, phosphatase, β-xylosidase, cellobiohydrolase, and phenol oxidase). We found significant differences in microbial organic matter utilization among the study streams draining contrasting geomorphological features, indicating a strong coupling between terrestrial and stream ecosystems. Phosphatase and phenol oxidase activities were higher in solifluction areas than in alluvial areas. Besides dissolved organic carbon, nitrogen availability was the main driver controlling enzyme activities in the high-Arctic, which suggests enhanced organic matter mineralization at increased nutrient availability. Overall, our study provides novel information on the controls of organic matter usage by high-Arctic stream biofilms, which is of high relevance due to the predicted increase of nutrient availability in high-Arctic streams in global climate change scenarios.
|
Enhanced Growth of Pilin-Deficient Geobacter sulfurreducens Mutants in Carbon Poor and Electron Donor Limiting ConditionsAbstract
Geobacter sulfurreducens pili enable extracellular electron transfer and play a role in secretion of c-type cytochromes such as OmcZ. PilA-deficient mutants of G. sulfurreducens have previously been shown to accumulate cytochromes within their membranes. This cytochrome retaining phenotype allowed for enhanced growth of PilA-deficient mutants in electron donor and carbon-limited conditions where formate and fumarate are provided as the sole electron donor and acceptor with no supplementary carbon source. Conversely, wild-type G. sulfurreducens, which has normal secretion of cytochromes, has comparative limited growth in these conditions. This growth is further impeded for OmcZ-deficient and OmcS-deficient mutants. A PilB-deficient mutant which prevents pilin production but allows for secretion of OmcZ had moderate growth in these conditions, indicating a role for cytochrome localization to enabling survival in the electron donor and carbon-limited conditions. To determine which pathways enhanced growth using formate, Sequential Window Acquisition of all Theoretical Mass Spectra mass spectrometry (SWATH-MS) proteomics of formate adapted PilA-deficient mutants and acetate grown wild type was performed. PilA-deficient mutants had an overall decrease in tricarboxylic acid (TCA) cycle enzymes and significant upregulation of electron transport chain associated proteins including many c-type cytochromes and [NiFe]-hydrogenases. Whole genome sequencing of the mutants shows strong convergent evolution and emergence of genetic subpopulations during adaptation to growth on formate. The results described here suggest a role for membrane constrained c-type cytochromes to the enhancement of survival and growth in electron donor and carbon-limited conditions.
|
Comparative Analyses of the Microbial Communities Inhabiting Coal Mining Waste Dump and an Adjacent Acid Mine Drainage CreekAbstract
Microbial communities inhabiting the acid mine drainage (AMD) have been extensively studied, but the microbial communities in the coal mining waste dump that may generate the AMD are still relatively under-explored. In this study, we characterized the microbial communities within these under-explored extreme habitats and compared with those in the downstream AMD creek. In addition, the interplay between the microbiota and the environmental parameters was statistically investigated. A Random Forest ensemble model indicated that pH was the most important environmental parameter influencing microbial community and diversity. Parameters associated with nitrogen cycling were also critical factors, with positive effects on microbial diversity, while S-related parameters had negative effects. The microbial community analysis also indicated that the microbial assemblage was driven by pH. Various taxa were enriched in different pH ranges: Sulfobacillus was the indicator genus in samples with pH < 3 while Acidobacteriaceae-affiliated bacteria prevailed in samples with 3 < pH < 3.5. The detection of some lineages that are seldom reported in mining areas suggested the coal mining dumps may be a reservoir of phylogenetic novelty. For example, potential nitrogen fixers, autotrophs, and heterotrophs may form diverse communities that actively self-perpetuate pyrite dissolution and acidic waste generation, suggesting unique ecological strategies adopted by these innate microorganisms. In addition, co-occurrence network analyses suggest that members of Acidimicrobiales play important roles in interactions with other taxa, especially Fe- and S-oxidizing bacteria such as Sulfobacillus spp.
|
Ecological Success of the Nitrosopumilus and Nitrosospira Clusters in the Intertidal ZoneAbstract
The intertidal zone is an important buffer and a nitrogen sink between land and sea. Ammonia oxidation is the rate-limiting step of nitrification, conducted by ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). However, it remains a debatable issue regarding dominant ammonia oxidizers in this region, and environmental factors driving their spatiotemporal niche differentiation have yet to be identified. In this study, intertidal and subtidal zones of Zhoushan Islands were selected for seasonal sampling. Ammonia-oxidizing activity, quantitative PCR, and 454 high-throughput sequencing were performed to study the nitrification potential, abundance, and community structure of ammonia-oxidizing archaea and bacteria. AOA and AOB amoA abundance (107–108amoA gene copies/g dry weight sediment) varied spatiotemporally independently of environmental factors. AOA surpassed AOB in most samples, driven by sediment temperature, moisture, and total nitrogen. The diversity of both AOA and AOB differed spatiotemporally. The Nitrosopumilus and Nitrosospira clusters accounted for an absolutely dominant percentage of AOA (> 99%) and AOB (> 99%) respectively, indicating a negligible contribution of other clusters to ammonia oxidation. However, there was no significant correlation between nitrification potential and the abundance of AOA or AOB. Overall, the present study showed that AOA dominated over AOB spatiotemporally in the intertidal zone of Zhoushan Islands due to fluctuations in environmental factors, and the Nitrosopumilus and Nitrosospira clusters ecologically succeeded in the intertidal zone of Zhoushan Islands.
|
Microbial Ecology of the Western Gull ( Larus occidentalis )Abstract
Avian species host diverse communities of microorganisms which have important roles in the life of birds, including increased metabolism, protection from disease, and immune system development. Along with high human populations and a diversity of human uses of coastal zones, anthropogenic food sources are becoming increasingly available to some species, including gulls. Anthropogenic associations increase the likelihood of encountering foreign or pathogenic bacteria. Diseases in birds caused by bacteria are a substantial source of avian mortality; therefore, it is essential to characterize the microbiome of seabirds. Here, we determined both core and environmentally derived microbial communities of breeding western gulls (Larus occidentalis) from six colonies in California and Oregon. Using DNA extracted from bacterial swabs of the bill, cloaca, and feet of gulls, 16S rRNA gene sequencing was performed targeting the V4 region. We identified a total of 8542 operational taxonomic units (OTUs) from 75 gulls. Sixty-eight OTUs were identified in gulls from all six colonies with the greatest representation from phyla’s of Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. Overall, microbial richness based on Chao’s Abundance-based Coverage Estimator (ACE) index was similar for all colonies (mean = 2347 OTUs) with the smallest coastal colonies having the highest richness (mean = 2626 OTUs) and the largest colonies, located farther off-shore, having the lowest (mean = 2068 OTUs). This survey represents the most in-depth assessment to date of microbes associated with western gulls, and the first study to identify both species-specific and environmentally derived bacteria across multiple populations.
|
ΩτοΡινοΛαρυγγολόγος Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,
Translate
Ετικέτες
Τρίτη 17 Σεπτεμβρίου 2019
Αναρτήθηκε από
Medicine by Alexandros G. Sfakianakis,Anapafseos 5 Agios Nikolaos 72100 Crete Greece,00302841026182,00306932607174,alsfakia@gmail.com,
στις
9:17 μ.μ.
Ετικέτες
00302841026182,
00306932607174,
alsfakia@gmail.com,
Anapafseos 5 Agios Nikolaos 72100 Crete Greece,
Medicine by Alexandros G. Sfakianakis
Εγγραφή σε:
Σχόλια ανάρτησης (Atom)
Αρχειοθήκη ιστολογίου
-
►
2023
(278)
- ► Φεβρουαρίου (139)
- ► Ιανουαρίου (139)
-
►
2022
(1962)
- ► Δεκεμβρίου (107)
- ► Σεπτεμβρίου (158)
- ► Φεβρουαρίου (165)
- ► Ιανουαρίου (163)
-
►
2021
(3614)
- ► Δεκεμβρίου (152)
- ► Σεπτεμβρίου (271)
- ► Φεβρουαρίου (64)
- ► Ιανουαρίου (357)
-
►
2020
(3279)
- ► Δεκεμβρίου (396)
- ► Σεπτεμβρίου (157)
- ► Φεβρουαρίου (382)
- ► Ιανουαρίου (84)
-
▼
2019
(11718)
- ► Δεκεμβρίου (265)
-
▼
Σεπτεμβρίου
(545)
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Raise awareness of the global burden of viral he...
- A dream machine – The EU Health Programme tur...
- Aggressive Digital Papillary Adenocarcinoma Init...
- Tackle the Changes of Aging,
- Non-Invasive Hemodynamic Monitoring of Cocaine-I...
- Healthcare Satisfaction and Unmet Needs Among Be...
- Urinary prostaglandin D2 and E2 metabolites asso...
- Fundamental Voice Frequency: Acoustic, Electrogl...
- JDDG: Journal der Deutschen Dermatologischen Ges...
- Preface to the third issue of Heart India 2019Al...
- Clinical Medicine Insights: Pediatrics, ...
- Clinical Medicine Insights: Endocrinology and D...
- Clinical Medicine Insights: Case Reports, ...
- Announcing the first novel class of rapid-onset ...
- Clinical Pathology , Brief Report
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- Radiotherapy and Oncology
- Clinical Neurology and Neurosurgery
- Head and Neck
- Journal of Neurosurgical Anesthesiology - Publis...
- Alcohol,
- Nanomaterials, Vol. 9, Pages 1392: Low Refle...
- Journal of Clinical Medicine
- International Journal of Environmental Research ...
- Cancers, Vol. 11, Pages 1461: Arl13b Regulat...
- Medicine by Alexandros G. Sfakianakis,Anapafseos 5...
- The journey to zero deep-vein thrombosis in crit...
- Shunt care: More than what beats the eyeDattatra...
- Ethics and End-of-Life CareJozef KeseciogluJourn...
- Exercise in congenital heart disease: A contempo...
- Brexit and UK citizens with HIV residing in Spai...
- Does Single-Dose Preemptive Intravenous Ibuprofe...
- Flow cytometric assessment of CD30 expression in...
- Validation of Transtek TMB-1776 according to Eur...
- A Prospective Outcome Assessment After Bronchosc...
- Εκδρομή στην Βόρειο Ήπειρο, Η «Ένωση τέκνων, σ...
- Health Care Policy and Quality Ethical Dilemmas...
- Age and preoperative velar closure ratio are sig...
- Strategies in anti-Mycobacterium tuberculosis d...
- Molecular Systems BiologyVolume 15, Issue 9Septe...
- Time-related outcome in patients with traumatic ...
- The effectiveness of a novel cable-driven gait t...
- A MAPP Network Case-Control Study of Urologic Ch...
- One-Year Prognosis of Kidney Injury at Discharge...
- Strengthening prevention and control activities ...
- World Social Psychiatry: A Dream Coming True, bu...
- General Anesthesia Versus Conscious Sedation in ...
- Nieuwe beeldvormende technieken bij de diagnosti...
- Roles of TGFβ1 in the expression of phosphoinosi...
- World NCD Federation guidelines for prevention, ...
- Multiple congenital colonic stenosis – A case re...
- NECK AND HEAD SUPPORT,
- Bronchial-arterial-circulation-sparing lung pres...
- Antithymocyte Globulin Antibody Titer Congruent ...
- Science, realism, and unconceived alternatives: ...
- Utility of a smartphone-enabled otoscope in the ...
- Outcomes of Infants Supported With Extracorporea...
- Intelligent Exercise Guidance System Based on Sm...
- // EXPERT OPINION, ESMO 2019: Recommendation...
- Dimitsana is a mountain village and a former munic...
- A multiplex pharmacogenetics assay using the Min...
- Musculoskeletal Injuries and Depression in Athle...
- MRI in early detection of prostate cancerPurpos...
- Reintroduction of quazepam: an update on compara...
- Endoscopic Management of the Large Benign ...
- Management of Early Pregnancy Loss Management of...
- Get Vaccinated to #FightFlu The best st...
- ► Φεβρουαρίου (1143)
- ► Ιανουαρίου (744)
-
►
2017
(2)
- ► Φεβρουαρίου (1)
- ► Ιανουαρίου (1)
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου