Translate

Τρίτη 17 Σεπτεμβρίου 2019

A model for the chemomechanical coupling of the mammalian cytoplasmic dynein molecular motor

Abstract

Available single-molecule data have shown that some mammalian cytoplasmic dynein dimers move on microtubules with a constant step size of about 8.2 nm. Here, a model is presented for the chemomechanical coupling of these mammalian cytoplasmic dynein dimers. In contrast to the previous models, a peculiar feature of the current model is that the rate constants of ATPase activity are independent of the external force. Based on this model, analytical studies of the motor dynamics are presented. With only four adjustable parameters, the theoretical results reproduce quantitatively diverse available single-molecule data on the force dependence of stepping ratio, velocity, mean dwell time, and dwell-time distribution between two mechanical steps. Predicted results are also provided for the force dependence of the number of ATP molecules consumed per mechanical step, indicating that under no or low force the motors exhibit a tight chemomechanical coupling, and as the force increases the number of ATPs consumed per step increases greatly.

57 Fe enrichment in mice for β-thalassaemia studies via Mössbauer spectroscopy of blood samples

Abstract

In this work, wild-type and heterozygous β-thalassaemic mice were enriched with 57Fe via gastrointestinal absorption to characterize in greater detail the iron complexes then identifiable via Mössbauer spectroscopy. The 57Fe enrichment method was validated and Mössbauer spectra were obtained at 80 K from blood samples from wild-type and β-thalassaemic mice at 1, 3, 6, and 9 months of age. As expected, the haemoglobin levels of the thalassaemic mice were lower than from normal mice, indicating anaemia. Furthermore, significant amounts of ferritin-like iron were observed in the thalassaemic mice samples, which decreased with mouse age, reflecting the pattern of reticulocyte count reduction reported in the literature.

Impact of semen-derived amyloid (SEVI) on sperm viability and motility: its implication in male reproductive fitness

Abstract

Human semen contains a large number of macromolecules, including proteins/enzymes and carbohydrates, regulating and protecting sperm cells. Proteomic analysis of human seminal fluid led to the discovery of semen amyloids derived from short peptide fragments of the proteins prostatic acid phosphatase (PAP) and semenogelin (SG) which are known to play a crucial role in enhancing HIV infection. However, the relevance of their existence in human semen and role in maintaining sperm behavior remains unclear. Distinct physiological, biochemical, and biophysical attributes might cause these amyloids to influence sperm behavior positively or negatively, affecting fertilization or other reproductive processes. We assessed the direct effect of amyloids derived from a PAP248–286 fragment, on sperm motility and viability, which are crucial parameters for assessment of sperm quality in semen. Co-incubation of human sperm with PAP248–286 amyloids at normal physiological concentrations formed in buffer led to significant reduction in sperm viability, though approximately a 10× higher concentration was needed to show a similar effect with amyloid formed in seminal fluid. Both forms of PAP248–286 amyloid also had a significant impact on sperm motility at physiological levels, in agreement with a previous report. Our study suggests that PAP248–286 amyloids can directly influence sperm motility and viability in a concentration-dependent manner. We hypothesise that the direct toxic effect of PAP248–286 amyloid is normally mitigated by other seminal fluid ingredients, but that in pathological conditions, where PAP248–286 concentrations are elevated and it plays a role in determining sperm health and viability, with relevance for male fertility as well as sterility.

Unveiling the binding and orientation of the antimicrobial peptide Plantaricin 149 in zwitterionic and negatively charged membranes

Abstract

Antimicrobial peptides are a large group of natural compounds which present promising properties for the pharmaceutical and food industries, such as broad-spectrum activity, potential for use as natural preservatives, and reduced propensity for development of bacterial resistance. Plantaricin 149 (Pln149), isolated from Lactobacillus plantarum NRIC 149, is an intrinsically disordered peptide with the ability to inhibit bacteria from the Listeria and Staphylococcus genera, and which is capable of promoting inhibition and disruption of yeast cells. In this study, the interactions of Pln149 with model membranes composed of zwitterionic and/or anionic phospholipids were investigated using a range of biophysical techniques, including isothermal titration calorimetry, surface tension measurements, synchrotron radiation circular dichroism spectroscopy, oriented circular dichroism spectroscopy, and optical microscopy, to elucidate these peptides’ mode of interactions and provide insight into their functional roles. In anionic model membranes, the binding of Pln149 to lipid bilayers is an endothermic process and induces a helical secondary structure in the peptide. The helices bind parallel to the surfaces of lipid bilayers and can promote vesicle disruption, depending on peptide concentration. Although Pln149 has relatively low affinity for zwitterionic liposomes, it is able to adsorb at their lipid interfaces, disturbing the lipid packing, assuming a similar parallel helix structure with a surface-bound orientation, and promoting an increase in the membrane surface area. Such findings can explain the intriguing inhibitory action of Pln149 in yeast cells whose cell membranes have a significant zwitterionic lipid composition.

Viscoelasticity variation in a biofilm-mediated Bacillus subtilis suspension induced by adding polyethylene glycol

Abstract

Recent experiments show that synthetic polymers can influence the degree of microbial aggregation and the rheological properties of bacterial suspensions, the study of which can help us control biofilm formation. In this article, we add polyethylene glycol (PEG) with various molecular weights and concentrations into two types Bacillus subtilis cell cultures, Luria Broth (LB) and Minimal Salts glutamate glycerol (MSgg), respectively. We first observe cell clusters in cell suspensions with various concentrations of PEG, and measure cluster size in both static and dynamic fluid environments. We find that cells gather together into big clusters and most of the cells are arranged longitudinally; and the large cell clusters are divided into smaller aggregates under fluid shear. We then use a rheometer to measure the viscoelastic properties of various cell cultures, to represent the degree of aggregation of the bacterial suspensions. We find the storage modulus, the loss modulus and the viscosity of bacterial suspensions not only depend on the cell aggregation but also depend on the directionality of cellular motion.

Enzymatic activity of human immunodeficiency virus type 1 protease in crowded solutions

Abstract

Cells are crowded with various macromolecules and metabolites, which affect biochemical reactions in many ways, from the diffusion of substrates to catalytic activities of enzymes. We herein investigated the proteolytic activity of the human immunodeficiency virus type 1 protease (HIV-1 PR) under non-crowded and crowded conditions. The latter environment was mimicked with various (poly)ethylene glycol molecules as crowding agents. We found that these crowding agents affect the kinetic parameters of the HIV-1 PR catalyzed reaction by increasing the Michaelis–Menten constant and decreasing the maximum velocity. The influence of crowding was concentration dependent. We explain this effect by the dynamics of the HIV-1 PR flexible flaps that cover the peptide substrate binding site and are crucial for enzyme activity, and by a possibly slower substrate–enzyme association time in the crowded conditions.

Are cell membrane nanotubes the ancestors of the nervous system?

Abstract

Cell membrane nanotubes, variously referred to as tunneling nanotubes and cytonemes, are currently the focus of much interest. They are of ancient origin, as indicated by their opportunistic use for cell invasion by pathogens, including bacteria and virus, and by their employment in bacterial networking. They play a significant role in cancer invasion and in the explanation of glioblastoma resistance to treatment. Their structure and properties have been investigated with optical tweezers. They have been detected in vivo. Their role in the immune system was early verified. Very recently, it was shown that they share many properties with nerve synapses, including the roles of glutamate and Ca ions. Similar features have also been observed in primitive plants. These results support the conjecture that, besides their roles in immunology, developmental biology and cancer, cell membrane nanotubes are the ancestors of the nervous system.

Biophysical characterization and molecular phylogeny of human KIN protein

Abstract

The DNA/RNA-binding KIN protein was discovered in 1989, and since then, it has been found to participate in several processes, e.g., as a transcription factor in bacteria, yeasts, and plants, in immunoglobulin isotype switching, and in the repair and resolution of double-strand breaks caused by ionizing radiation. However, the complete three-dimensional structure and biophysical properties of KIN remain important information for clarifying its function and to help elucidate mechanisms associated with it not yet completely understood. The present study provides data on phylogenetic analyses of the different domains, as well as a biophysical characterization of the human KIN protein (HSAKIN) using bioinformatics techniques, circular dichroism spectroscopy, and differential scanning calorimetry to estimate the composition of secondary structure elements; further studies were performed to determine the biophysical parameters ΔHm and Tm. The phylogenetic analysis indicated that the zinc-finger and winged helix domains are highly conserved in KIN, with mean identity of 90.37% and 65.36%, respectively. The KOW motif was conserved only among the higher eukaryotes, indicating that this motif emerged later on the evolutionary timescale. HSAKIN has more than 50% of its secondary structure composed by random coil and β-turns. The highest values of ΔHm and Tm were found at pH 7.4 suggesting a stable structure at physiological conditions. The characteristics found for HSAKIN are primarily due to its relatively low composition of α-helices and β-strands, making up less than half of the protein structure.

Phenotypic, structural, and ultrastructural analysis of triple-negative breast cancer cell lines and breast cancer stem cell subpopulation

Abstract

Triple negative breast cancer (TNBC) is a highly heterogeneous disease, which influences the therapeutic response and makes difficult the discovery of effective targets. This heterogeneity is attributed to the presence of breast cancer stem cells (BCSCs), which determines resistance to chemotherapy and subsequently disease recurrence and metastasis. In this context, this work aimed to evaluate the morphological and phenotypic cellular heterogeneity of two TNBC cell lines cultured in monolayer and tumorsphere (TS) models by fluorescence and electron microscopy and flow cytometry. The BT-549 and Hs 578T analyses demonstrated large phenotypic and morphological heterogeneity between these cell lines, as well as between the cell subpopulations that compose them. BT-549 and Hs 578T are heterogeneous considering the cell surface marker CD44 and CD24 expression, characterizing BCSC mesenchymal-like cells (CD44+/CD24), epithelial cells (CD44/CD24+), hybrid cells with mesenchymal and epithelial features (CD44+/CD24+), and CD44/CD24 cells. BCSC epithelial-like cells (ALDH+) were found in BT-549, BT-549 TS, and Hs 578T TS; however, only BT-549 TS showed a high ALDH activity. Ultrastructural characterization showed the heterogeneity within and among BT-549 and Hs 578T in monolayer and TS models being formed by more than one cellular type. Further, the mesenchymal characteristic of these cells is demonstrated by E-cadherin absence and filopodia. It is well known that tumor cell heterogeneity can influence survival, therapy responses, and the rate of tumor growth. Thus, molecular understanding of this heterogeneity is essential for the identification of potential therapeutic options and vulnerabilities of oncological patients.

A new six-electrode electrical impedance technique for probing deep organs in the human body

Abstract

Electrical impedance measurements of biological tissue have many potential applications and tetrapolar impedance measurement (TPIM) with four electrodes is traditionally used which eliminates high skin contact impedance. A linear array of four electrodes for TPIM on the horizontal plane of a cylindrical volume conductor of diameter D, where the length of the array is πD/2 with potential electrodes near the centre of the array, will give a high sensitivity near the surface which reduces rapidly with depth. A recently proposed six-electrode variation of TPIM uses an additional pair of potential electrodes on the opposite side of the volume conductor in the same horizontal plane around the circumference, with the expectation that the sensitivity of the deeper regions will thereby be enhanced. The present work carries out a finite element simulation (using COMSOL) and an experimental phantom study (saline phantom) to quantitatively evaluate the improvement obtained by this new method. The new configuration doubled the sensitivity at the central region, which was reasonably uniform over a wider zone, gradually increasing towards the potential electrodes on both sides. This would be useful for a range of biological studies of deep body organs such as lungs, stomach, and bladder. where the respective external body shapes may be approximated by an oval cylinder and where electrical impedance techniques have shown promise.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate