Autologous immune cells genetically engineered to target B-cell maturation antigen can help patients with relapsed or refractory multiple myeloma achieve deep molecular remissions with minimal neurotoxicity, according to initial data from a phase I trial.
Summary:Macrophages modulate tumor response to chemotherapy; in this issue, Lossos and colleagues show that high-dose alkylating agents instigate a synthetic lethal program in lymphoma cells that is independent of DNA damage and involves recruitment and priming of macrophages for antibody-mediated tumor phagocytosis. These findings implicate chemotherapy-elicited macrophages as critical effectors of lymphoma clearance during biological therapy. See related article by Lossos et al., p. 944.
To demonstrate the potential of real-world evidence generated from real-world data, Foundation Medicine and Flatiron Health teamed up to create a large-scale clinico-genomic database. The database, which links clinical and genomic data gathered from patients with non-small cell lung cancer treated in community practices, was validated in a recent study.
Previous studies have described that tumor organoids can capture the diversity of defined human carcinoma types. Here, we describe conditions for long-term culture of human mucosal organoids. Using this protocol, a panel of 31 head and neck squamous cell carcinoma (HNSCC)–derived organoid lines was established. This panel recapitulates genetic and molecular characteristics previously described for HNSCC. Organoids retain their tumorigenic potential upon xenotransplantation. We observe differential...
Researchers have developed an immune-deficient adult zebrafish model that engrafts a variety of human cancers, allowing them to visualize tumor growth at single-cell resolution and track responses to drug therapy. Using the model, they identified a possible treatment for rhabdomyosarcoma.
The BCL2 family plays important roles in acute myeloid leukemia (AML). Venetoclax, a selective BCL2 inhibitor, has received FDA approval for the treatment of AML. However, drug resistance ensues after prolonged treatment, highlighting the need for a greater understanding of the underlying mechanisms. Using a genome-wide CRISPR/Cas9 screen in human AML, we identified genes whose inactivation sensitizes AML blasts to venetoclax. Genes involved in mitochondrial organization and function were significantly...
A collection of recently published news items.
Allosteric kinase inhibitors offer a potentially complementary therapeutic strategy to ATP-competitive kinase inhibitors due to their distinct sites of target binding. In this study, we identify and study a mutant-selective EGFR allosteric inhibitor, JBJ-04-125-02, which as a single agent can inhibit cell proliferation and EGFRL858R/T790M/C797S signaling in vitro and in vivo. However, increased EGFR dimer formation limits treatment efficacy and leads to drug resistance. Remarkably, osimertinib, an...
During the American Association for Cancer Research Annual Meeting 2019, a panel of experts convened to discuss the concept of hyperprogressive disease (HPD), including key criteria, hypotheses as to the underlying biology, and what needs to be done to better understand and assess patients' risk of HPD.
Mutations in the TP53 tumor suppressor gene are common in many cancer types, including the acute myeloid leukemia (AML) subtype known as complex karyotype AML (CK-AML). Here, we identify a gain-of-function (GOF) Trp53 mutation that accelerates CK-AML initiation beyond p53 loss and, surprisingly, is required for disease maintenance. The Trp53R172H mutation (TP53R175H in humans) exhibits a neomorphic function by promoting aberrant self-renewal in leukemic cells, a phenotype that is present in hematopoietic...
Oncologists are testing fecal transplants and other microbiome-based products in combination with checkpoint inhibitors in an effort to increase and enhance responses. However, questions remain about how the microbes affect host immunity and which preparations of bacteria are optimal.
Mark above section as read
In the era of omics-driven research, it remains a common dilemma to stratify individual patients based on the molecular characteristics of their tumors. To improve molecular stratification of patients with breast cancer, we developed the Gaussian mixture model (GMM)–based classifier. This probabilistic classifier was built on mRNA expression data from more than 300 clinical samples of breast cancer and healthy tissue and was validated on datasets of ESR1, PGR, and ERBB2, which encode standard clinical...
The extracellular milieu of tumors is generally assumed to be immunosuppressive due in part to metabolic factors. Here, we review methods for probing the tumor metabolic microenvironment. In parallel, we consider the resulting available evidence, with a focus on lactate, which is the most strongly increased metabolite in bulk tumors. Limited microenvironment concentration measurements suggest depletion of glucose and modest accumulation of lactate (less than 2-fold). Isotope tracer measurements show...
Nitric oxide (NO) has a wide range of potential applications in tumor therapy. However, a targeted delivery system for NO donors has remained elusive, creating a bottleneck that limits its druggability. The antibody–drug conjugate (ADC) is a targeted drug delivery system composed of an antibody linked to an active cytotoxic drug. This design may compensate for the weak targeting ability and various biological functions of the NO donor. In this study, we designed the NO donor HL-2, which had a targeted,...
Oncogenic fusions involving NTRK1, NTRK2, and NTRK3 with various partners are diagnostic of infantile fibrosarcoma and secretory carcinoma yet also occur in lower frequencies across many types of malignancies. Recently, targeted small molecular inhibitor therapy has been shown to induce a durable response in a high percentage of patients with NTRK fusion–positive cancers, which has made the detection of NTRK fusions critical. Several techniques for NTRK fusion diagnosis exist, including pan-Trk IHC,...
Triple-negative breast cancer (TNBC) is highly heterogeneous and has a poor prognosis. It is therefore important to identify the underlying molecular mechanisms in order to develop novel therapeutic strategies. Although emerging research has revealed long noncoding RNAs (lncRNA) as vital to carcinogenesis and cancer progression, their functional involvement in TNBC has not been well defined. In this study, we utilized the The Cancer Genome Atlas (TCGA) database and analyzed clinical samples to show...
Inhibiting myeloid-derived suppressor cells (MDSC) might be the ultimate barrier to break down tumor defenses and recover the preexisting T-cell immunity required to respond to immunotherapy. However, selectively intercepting MDSCs to prove their etiologic role in cancer progression is not an easy task. In this issue of Cancer Research, Yin and colleagues demonstrate unequivocally that the Aurora A kinase inhibitor, alisertib, specifically neutralizes MDSCs and triggers the rapid accrual of cytotoxic...
Although ovarian cancer has a low incidence rate, it remains the most deadly gynecologic malignancy. Previous work has demonstrated that the DNMTi 5-Azacytidine (5AZA-C) activates type I interferon signaling to increase IFNγ+ T cells and natural killer (NK) cells and reduce the percentage of macrophages in the tumor microenvironment. To improve the efficacy of epigenetic therapy, we hypothesized that the addition of α-difluoromethylornithine (DFMO), an ornithine decarboxylase inhibitor, may further...
Epigenetic modifications including altered DNA methylation and histone posttranslational modifications (PTM) are central to the biology of several cancers. These modifications can regulate DNA accessibility and consequently, gene expression. In this issue, Wojcik and colleagues explore epigenetic drivers of malignant peripheral nerve sheath tumors (MPNST) harboring loss-of-function polycomb-repressive complex 2 mutations. They demonstrate alterations in specific histone PTMs and a global increase...
While clinical cancer research has produced many highly effective drugs, the diversity and evolutionary capacity of most cancer populations remain insurmountable barriers to cure. Here, we propose that curative outcomes may, nevertheless, be achieved by sequencing therapies that are individually effective but noncurative. Basic principles for such an approach are derived from the eco-evolutionary dynamics of background extinctions in which a “first strike” reduces the size and heterogeneity of the...
Acute myeloid leukemia (AML) is a high-risk disease with a poor prognosis, particularly in elderly patients. Because current AML treatment relies primarily on untargeted therapies with severe side effects that limit patient eligibility, identification of novel therapeutic AML targets is highly desired. We recently described AT1413, an antibody produced by donor B cells of a patient with AML cured after allogeneic hematopoietic stem cell transplantation. AT1413 binds CD43s, a unique sialylated epitope...
mTOR is a serine/threonine kinase that acts in two distinct complexes, mTORC1 and mTORC2, and is dysregulated in many diseases including cancer. mLST8 is a shared component of both mTORC1 and mTORC2, yet little is known regarding how mLST8 contributes to assembly and activity of the mTOR complexes. Here we assessed mLST8 loss in a panel of normal and cancer cells and observed little to no impact on assembly or activity of mTORC1. However, mLST8 loss blocked mTOR association with mTORC2 cofactors...
Pancreatic ductal adenocarcinoma (PDAC) is associated with robust activity of the coagulation system. To determine mechanisms by which clotting factors influence PDAC tumor progression, we generated and characterized C57Bl/6-derived KPC (KRasG12D, TRP53R172H) cell lines. Tissue factor (TF) and protease-activated receptor-1 (PAR-1) were highly expressed in primary KPC pancreatic lesions and KPC cell lines similar to expression profiles observed in biopsies of patients with PDAC. In allograft studies,...
Chemotherapeutic regimens for ovarian cancer often include the use of DNA interstrand crosslink–inducing agents (e.g., platinum drugs) or DNA double-strand break–inducing agents. Unfortunately, the majority of patients fail to maintain a durable response to treatment, in part, due to drug resistance, contributing to a poor survival rate. In this study, we report that cisplatin sensitivity can be restored in cisplatin-resistant ovarian cancer cells by targeting the chromatin-associated high-mobility...
Approximately 40% of patients with stage I–III triple-negative breast cancer (TNBC) recur after standard treatment, whereas the remaining 60% experience long-term disease-free survival (DFS). There are currently no clinical tests to assess the risk of recurrence in TNBC patients. We previously determined that TNBC patients with MHC class II (MHCII) pathway expression in their tumors experienced significantly longer DFS. To translate this discovery into a clinical test, we developed an MHCII Immune...
Genome-wide association study–identified prostate cancer risk variants explain only a relatively small fraction of its familial relative risk, and the genes responsible for many of these identified associations remain unknown. To discover novel prostate cancer genetic loci and possible causal genes at previously identified risk loci, we performed a transcriptome-wide association study in 79,194 cases and 61,112 controls of European ancestry. Using data from the Genotype-Tissue Expression Project,...
CellMiner (http://discover.nci.nih.gov/cellminer) and CellMinerCDB (https://discover.nci.nih.gov/cellminercdb/) are web-based applications for mining publicly available genomic, molecular, and pharmacologic datasets of human cancer cell lines including the NCI-60, Cancer Cell Line Encyclopedia, Genomics of Drug Sensitivity in Cancer, Cancer Therapeutics Response Portal, NCI/DTP small cell lung cancer, and NCI Almanac cell line sets. Here, we introduce our RNA sequencing (RNA-seq) data for the NCI-60...
Malignant peripheral nerve sheath tumor (MPNST) is an aggressive sarcoma with recurrent loss-of-function alterations in polycomb-repressive complex 2 (PRC2), a histone-modifying complex involved in transcriptional silencing. To understand the role of PRC2 loss in pathogenesis and identify therapeutic targets, we conducted parallel global epigenomic and proteomic analysis of archival formalin-fixed, paraffin-embedded (FFPE) human MPNST with and without PRC2 loss (MPNSTLOSS vs. MPNSTRET). Loss of PRC2...
Copy number alterations are crucial for the development of colorectal cancer. Our whole-genome analysis identified tocopherol alpha transfer protein-like (TTPAL) as preferentially amplified in colorectal cancer. Here we demonstrate that frequent copy number gain of TTPAL leads to gene overexpression in colorectal cancer from a Chinese cohort (n = 102), which was further validated by a The Cancer Genome Atlas (TCGA) cohort (n = 376). High expression of TTPAL was significantly associated with shortened...
Understanding the roles of noncoding RNAs (ncRNA) in tumorigenesis and metastasis would establish novel avenues to identify diagnostic and therapeutic targets. Here, we aimed to identify hepatocellular carcinoma (HCC)–specific ncRNA and to investigate their roles in hepatocarcinogenesis and metastasis. RNA-seq of xenografts generated by lung metastasis identified long noncoding RNA small nucleolar RNA host gene 10 (SNHG10) and its homolog SCARNA13 as novel drivers for the development and metastasis...
Inflammatory breast cancer (IBC) is a highly aggressive form of breast cancer that displays profound cancer stem cell (CSC) and mesenchymal features that promote rapid metastasis. Another hallmark of IBC is high infiltration of M2 tumor-associated (immune-suppressing) macrophages. The molecular mechanism that drives these IBC phenotypes is not well understood. Using patient breast tumor specimens, breast cancer cell lines, and a patient-derived xenograft model of IBC, we demonstrate that IBC strongly...
Collagen prolyl hydroxylation (CPH), which is catalyzed by prolyl 4-hydroxylase (P4H), is the most prevalent posttranslational modification in humans and requires vitamin C (VitC). Here, we demonstrate that CPH acts as an epigenetic modulator of cell plasticity. Increased CPH induced global DNA/histone methylation in pluripotent stem and tumor cells and promoted cell state transition (CST). Interfering with CPH by either genetic ablation of P4H subunit alpha-2 (P4HA2) or pharmacologic treatment reverted...
Homozygous deletion of methylthioadenosine phosphorylase (MTAP) is one of the most frequent genetic alterations in glioblastoma (GBM), but its pathologic consequences remain unclear. In this study, we report that loss of MTAP results in profound epigenetic reprogramming characterized by hypomethylation of PROM1/CD133–associated stem cell regulatory pathways. MTAP deficiency promotes glioma stem-like cell (GSC) formation with increased expression of PROM1/CD133 and enhanced tumorigenicity of GBM cells...
In KRAS-mutant lung adenocarcinoma, tumors with LKB1 loss (KL) are highly enriched for concurrent KEAP1 mutations, which activate the KEAP1/NRF2 pathway (KLK). Here, we investigated the biological consequences of these cooccurring alterations and explored whether they conferred specific therapeutic vulnerabilities. Compared with KL tumors, KLK tumors exhibited increased expression of genes involved in glutamine metabolism, the tricarboxylic acid cycle, and the redox homeostasis signature. Using isogenic...
Immunotherapies are an emerging strategy for treatment of solid tumors. Improved understanding of the mechanisms employed by cytotoxic T lymphocytes (CTL) to control tumors will aid in the development of immunotherapies. CTLs can directly kill tumor cells in a contact-dependent manner or may exert indirect effects on tumor cells via secretion of cytokines. Here, we aim to quantify the importance of these mechanisms in murine thymoma EL4/EG7 cells. We developed an agent-based model (ABM) and an ordinary...
Although tumorigenesis is dependent on the reprogramming of cellular metabolism, the metabolic pathways engaged in the formation of metastases remain largely unknown. The transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α) plays a pleiotropic role in the control of cancer cell metabolism and has been associated with a good prognosis in prostate cancer. Here, we show that PGC1α represses the metastatic properties of prostate cancer cells via modulation...
The Aurora A inhibitor alisertib shows encouraging activities in clinical trials against advanced breast cancer. However, it remains unclear whether and how the inflammatory microenvironment is involved in its efficacy. Here, we demonstrated that inhibition of Aurora A directly reshaped the immune microenvironment through removal of tumor-promoting myeloid cells and enrichment of anticancer T lymphocytes, which established a tumor-suppressive microenvironment and significantly contributed to the...
Δεν υπάρχουν σχόλια:
Δημοσίευση σχολίου