Translate

Τετάρτη 31 Ιουλίου 2019

NeuroOncology

A review of eligibility for patients with central nervous system (CNS) metastases from non-small cell lung cancer (NSCLC) in immunotherapy clinical trials

Central nervous system neuroblastoma metastases pseudoprogression following intraventricular anti-B7-H3 radioimmunotherapy

A novel finding of an IDH2 mutation in an interesting adult Sonic Hedgehog mutated medulloblastoma

Prognostic significance of VEGF receptors expression on the tumor cells in skull base chordoma

Abstract

Background

Chordoma is a rare refractory neoplasm that arises from the embryological remnants of the notochord, which is incurable using any multimodality therapy. Vascular endothelial growth factor (VEGF) is a potent activator of angiogenesis that is strongly associated with the tumor-immune microenvironment. These factors have not been elucidated for chordomas.

Methods

To evaluate the characteristics of vascular and tumor cells in chordoma, we first analyzed the expression of VEGF receptor (VEGFR) 1, VEGFR2, CD34, and Brachyury in a cell line and 54 tumor tissues. Patients with primary skull base chordomas were divided into the following two groups as per the tumor growth rate: patients with slow progression (SP: < 3 mm/year) and those with rapid progression (RP: ≥ 3 mm/year). Thus, the expressions of VEGF-A, VEGFR 1, and VEGFR2 on tumor cells; tumor infiltrative immune cells, including regulatory T cells (Tregs) and tumor-associated macrophages (TAMs); and immune-checkpoint molecules (PD-1/PD-L1) were analyzed with the clinical courses, especially in a comparison between the two groups.

Results

In chordomas, both VEGFR1 and VEGFR2 were strongly expressed not only on vascular endothelial cells, but also on tumor cells. The recurrent cases showed significantly higher VEGFR1 expressions on tumor cells than the primary cases. The expression of VEGF-A was significantly higher in RP than that in SP group. The numbers of CD163+ TAMs and Foxp3+ Tregs were higher in RP than that in SP group.

Conclusions

Expression of VEGFR1 and VEGFR2 on tumor cells and immunosuppressive tumor-microenvironment were related to tumor growth in patients with chordomas.

Evaluation of EZH2 expression, BRAF V600E mutation, and CDKN2A/B deletions in epithelioid glioblastoma and anaplastic pleomorphic xanthoastrocytoma

Abstract

Introduction

Epithelioid glioblastoma (EGBM) and anaplastic pleomorphic xanthoastrocytoma (APXA) are two rare entities with different prognoses. However, they share certain morphological and molecular features.

Materials and methods

To better recognize EGBM and APXA and identify the prognostic factors associated with these tumors, EZH2 status, BRAF V600E mutations, and CDKN2A/B deletions were assessed in 15 APXA and 13 EGBM cases.

Results

The expression level of EZH2 was found to increase with tumor grade. Overexpression of EZH2 occurred in 69.2% (9/13) of EGBM cases and 20% (3/15) of APXA cases. In addition, 72.7% (8/11) of EGBM and 12.5% (1/8) of APXA cases harbored a CDKN2Ahomozygous deletion based on fluorescence in situ hybridization. BRAF V600E mutations were detected in 80% (8/10) of EGBM cases and 42.9% (3/7) of APXA cases. Furthermore, EGBM, which exhibited co-existing low-grade glioma-like lesions, was found to have strong EZH2 expression and high Ki-67 indexes only in epithelioid cells and not in low grade lesions. Univariate analysis demonstrated that abundant epithelioid cells, extensive necrosis, EZH2 overexpression and BRAF V600E mutations were significantly associated with decreased overall survival in EGBM and APXA patients (P < 0.05).

Conclusions

The results suggested that testing for EZH2 expression and BRAF V600E mutations might be helpful to evaluate the prognoses of EGBM and APXA patients. The presence of heterogeneous EZH2 expression in biphasic EGBMs could also contribute to malignant progression.

CD146 is highly expressed in glioma stem cells and acts as a cell cycle regulator

Abstract

Introduction

CD146 is highly expressed in various malignant tumors and contributes to their malignancy phenotype, which involves metastatic and tumorigenic activity. However, studies on the expression and function of CD146 in brain tumors are limited.

Methods

We over-expressed or knocked-down CD146 in both conventionally cultured glioma cells and tumor spheres (TS). The distribution of glioma cells and their stem cells in different cell cycle phases was analyzed by flow cytometry using the stem cell marker CD133 and the glial precursor marker A2B5. CD146 expression was immunohistochemically examined in glioma tissues.

Results

The majority of glioma stem cells (GSCs) expressing CD133 were also CD146-positive. CD146 knockdown in GSCs significantly compromised cell growth. Cell cycle analysis revealed that most of the CD146 and CD133 double-positive cells were in the G2/M phase. Ectopic expression of CD146 in parental glioma cells resulted in cell cycle arrest of most differentiated cells in G0/G1 phase. In contrast, ectopic expression of CD146 in GSCs resulted in an increase in the number of CD133-positive cells in the G2/M phase. Furthermore, CD146 knockdown reduced the number of CD133-positive cells in the G2/M phase, which was consistent with effects of cell growth inhibition. Immunohistochemical analysis revealed that CD146 expression was significantly upregulated in World Health Organization (WHO) Grade III and IV glioma and positively correlated with CD133 expression.

Conclusions

CD146 is mainly expressed in dividing GSCs and may be a potential target for eradicating glioma stem cells.

Non-NF2 mutations have a key effect on inhibitory immune checkpoints and tumor pathogenesis in skull base meningiomas

Abstract

Aims

Skull base meningiomas represent approximately 25% of all meningiomas, nearly 20% of which are atypical or anaplastic. To date, effective medical treatments for meningiomas are still lacking. Genetic aberrations (TRAF7, KLF4, AKT1, and SMO) and the effects of genetic aberrations on the expression of inhibitory immune checkpoint molecules (PD-L1, IDO, and TDO2) in skull base meningiomas are still unclear.

Methods

Genetic alterations in the four genes were identified in 92 skull base meningiomas by Sanger sequencing. The expression differences in immune checkpoints between mutant and wild-type (WT) tumors were determined by immunohistochemistry (IHC) and Western blot (WB).

Results

The four mutations were not concurrently detected in the patients with skull base meningiomas. Among the tumors from the KLF4-mutated group, almost half were petroclival meningiomas. KLF4- and TRAF7-mutated tumors were predominantly secretory meningiomas. SMO-mutated tumors exhibited higher calcification, and half of these tumors were observed in the brain midline. Receiver operating characteristic curve analysis indicated that tumor volume can predict KLF4 and TRAF7 mutation status with high sensitivity and specificity, respectively. The IHC and WB analyses indicated that PD-L1, IDO, and TDO2 levels in tumors with TRAF7 mutations were significantly higher than those in WT tumors. Meanwhile, there was a significant difference in TDO2 between tumors with AKT1 mutations and WT tumors. Specifically, TRAF7 mutations could play a key role in skull base meningiomas by regulating the expression of inhibitory immune checkpoints and thus suppressing immune responses.

Conclusions

Checkpoint inhibitors may be potential strategies for targeted immunotherapies of these mutant meningiomas.

Primary or salvage stereotactic radiosurgery for brain metastatic small cell lung cancer

Abstract

Purpose

We evaluated the outcomes after stereotactic radiosurgery (SRS) for patients who developed new or progressive brain disease regardless of whether they had no prior radiation, PCI, or WBRT.

Methods

We retrospectively identified 90 SCLC patients who had SRS between 1991 and 2018. Thirty-one patients had no evidence of brain disease at the time of initial diagnosis but received prophylactic cranial irradiation. Twenty-six without initial brain disease underwent delayed SRS after brain disease was identified. Seventeen patients with synchronous systemic and brain disease underwent WBRT at the time of diagnosis. Fifteen patients had brain disease detected at the time of initial diagnosis and had initial SRS.

Results

We found no difference in overall survival between patients who received initial PCI or WBRT compared to patients treated with SRS alone at the time when brain metastases were identified. PCI was not associated with a longer duration between initial diagnosis and the development of brain metastasis. Local tumor control was achieved in 49 out of 58 patients who had follow up MRI available for review (84.5%). Actuarial local tumor control at 3, 6, and 12 months was calculated as 92%, 85%, and 80%, respectively. Radiation therapy (PCI or WBRT) before SRS was not associated with better or worse local tumor control.

Conclusion

In this experience neither prior PCI nor WBRT improved survival or local tumor control in SCLC patients who underwent SRS for new or recurrent brain disease.

Patterning of corpus callosum integrity in glioma observed by MRI: Effect of 2D bi-axial lamellar brain architecture

Abstract

Purpose

Corpus callosum (CC) is a main channel histologically for glioma spreading, downgrading the prognosis, the infiltration occurring through cellular reaction–diffusion process. Preliminary clinical trial indicates that CC’s surgical interruption appreciably enhances clinical outcome. We aim to find how high-grade glioma phenomenology is reflected in CC parameters, including various 3D diffusion eigenvalues differentially, whereby this information may be utilized for planning radiotherapy and surgical intervention.

Methods

Using 3 Tesla MRI diffusion-tensor imaging of glioma patients and matched controls, we formulated the callosal volume, fibre count, and 3D directional diffusivity eigenvalues (λ1–λ2–λ3), utilizing FDT/FMRIB-based analysis.

Results

In glioma, the callosal volume, fibre count and normalized volume decreases (p < 0.001), while axial diffusivity λ1 and radial diffusivity component λ2 significantly increase (p = 0.03, p = 0.04). Though not expected, the other radial diffusivity component λ3 remains unchanged (p = 0.11). Increase of λ1 and λ2 is due to gliomatous migration across the two directions (eigenvectors of λ1, λ2), which correlate respectively with medio-lateral commissural fibres and dorso-ventral perforating fibres in CC. These are corroborated by collateral radiological findings and immunohistological staining of those two fibre-systems in cat and human.

Conclusion

In glioma, the two diffusivities (λ1, λ2), enhance due to fluidic edema permeation through CC’s bi-axial lamina-type structural scaffold, formed by mediolateral commissural fibres and dorsoventral perforating cingulo-septal fibres. On other hand, the two radial diffusivities (λ2, λ3) are physiologically different and can be distinguished as lamellar diffusivity and focal diffusivity respectively. Lamellar diffusivity λ2 needs to be considered for MRI-assisted surgical intervention and radiotherapy planning in glioma.

Prognostic markers for immunodeficiency-associated primary central nervous system lymphoma

Abstract

Background

Immunodeficiency is a major risk factor for primary central nervous system lymphoma (PCNSL), but data on the disease in immunocompromised hosts are scarce. We aimed to define clinical and imaging features and determine prognostic factors for immunodeficiency-associated PCNSL.

Methods

All PCNSL cases seen at Yale-New Haven Hospital between 2002 and 2017 were retrospectively screened for immunodeficiency. For patients with immunosuppression, biopsies were evaluated and clinical data were collected. Predictors of survival were identified using Kaplan–Meier survival analysis and log-rank test. p values < 0.05 were considered significant.

Results

23 patients with immunodeficiencies were identified: eleven on immunosuppressants after solid organ transplantation, seven with human immunodeficiency virus infection, and five on immunosuppressive treatment due to various autoimmune disorders. PCNSL cases were largely Epstein-Barr-Virus positive (78%), histologically classified as diffuse large B cell lymphomas (87%), and showed peripheral contrast enhancement (81%) and corresponding heterogeneous diffusion-weighted imaging patterns (DWI) on magnetic resonance imaging (MRI) (71%). Median overall survival was 31 months. Age > 60 years at diagnosis (p < 0.01), peripheral enhancement of the mass on MRI (p = 0.04), heterogeneous DWI patterns (p = 0.04), and clonal immunoglobulin heavy chain gene rearrangement (IgHR) (p = 0.03) were found to be negative prognostic markers.

Conclusions

Immunodeficiency-associated PCNSL presents with similar clinical, pathological and imaging features. Age > 60 years, clonal IgHR, heterogeneous DWI pattern and peripheral enhancement on MRI may serve as predictors of less favorable outcome.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate