Translate

Σάββατο 20 Ιουλίου 2019

Cell Stress and Chaperones

Correction to: Superoxide dismutase activity as a predictor of adverse outcomes in patients with nonischemic dilated cardiomyopathy
Due to an unfortunate turn of events, part of the data in the columns HR, 95% CI and p is missing from Figs. 4–9 of the original publication.

Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells

Abstract

GBM cells can easily gain resistance to conventional therapy, and therefore treatment of glioblastoma multiforme (GBM) is difficult. One of the hallmark proteins known to be responsible for this resistance is heat shock protein 27 (Hsp27) which has a key role in the cell survival. Resveratrol, a natural compound, exhibits antitumor effects against GBM, but there are no reports regarding its effect on Hsp27 expression in gliomas. The aim of the present study was to asses the effect of resveratrol on Hsp27 expression and apoptosis in non-transfected and transfected U-87 MG human glioblastoma cells. In order to block the Hsp27 expression, siRNA transfection was performed. Non-transfected and transfected cells were treated with either 10 or 15 μM resveratrol. The effects of resveratrol were compared with quercetin, a well-known Hsp27 inhibitor. Resveratrol was found to induce apoptosis more effectively than quercetin. Our data showed that resveratrol induces dose- and time-dependent cell death. We also determined that silencing of Hsp27 with siRNA makes the cells more vulnerable to apoptosis upon resveratrol treatment. The highest effect was observed in the 15 μM resveratrol and 25 nM siRNA combination group (suppressed Hsp27 expression by 93.4% and induced apoptosis by 101.2%). This study is the first report showing that resveratrol reduces Hsp27 levels, and siRNA-mediated Hsp27 silencing enhances the therapeutic effects of resveratrol in glioma cells. Our results suggest that resveratrol administration in combination with Hsp27 silencing has a potential to be used as a candidate for GBM treatment.

Quantitative bioimage analytics enables measurement of targeted cellular stress response induced by celastrol-loaded nanoparticles

Abstract

The cellular stress response, which provides protection against proteotoxic stresses, is characterized by the activation of heat shock factor 1 and the formation of nuclear stress bodies (nSBs). In this study, we developed a computerized method to quantify the formation and size distribution of nSBs, as stress response induction is of interest in cancer research, neurodegenerative diseases, and in other pathophysiological processes. We employed an advanced bioimaging and analytics workflow to enable quantitative detailed subcellular analysis of cell populations even down to single-cell level. This type of detailed analysis requires automated single cell analysis to allow for detection of both size and distribution of nSBs. For specific induction of nSB we used mesoporous silica nanoparticles (MSNs) loaded with celastrol, a plant-derived triterpene with the ability to activate the stress response. To enable specific targeting, we employed folic acid functionalized nanoparticles, which yields targeting to folate receptor expressing cancer cells. In this way, we could assess the ability to quantitatively detect directed and spatio-temporal nSB induction using 2D and 3D confocal imaging. Our results demonstrate successful implementation of an imaging and analytics workflow based on a freely available, general-purpose software platform, BioImageXD, also compatible with other imaging modalities due to full 3D/4D and high-throughput batch processing support. The developed quantitative imaging analytics workflow opens possibilities for detailed stress response examination in cell populations, with significant potential in the analysis of targeted drug delivery systems related to cell stress and other cytoprotective cellular processes.

The endoplasmic reticulum unfolded protein response varies depending on the affected region of the tissue but independently from the source of stress

Abstract

Accumulation of unfolded proteins and calcium dyshomeostasis induces endoplasmic reticulum (ER) stress, which can be resolved by the unfolded protein response (UPR). We have previously reported that activation of the PERK/ATF4 branch of the UPR, by overexpressing Presenilin in part of the vestigial domain of Drosophila wing imaginal discs, induces both a caspase-dependent apoptosis and a Slpr/JNK/Dilp8-dependent developmental delay that allows compensation of cell death in the tissue. Recently, dDad1 depletion in Drosophila in engrailed-expressing cells of wing imaginal discs was also reported to activate the PERK/ATF4 branch but induced Mekk1/JNK-dependent apoptosis. Here, we assessed whether the stressed cell location in the wing imaginal disc could explain these differences in response to chronic ER stress or whether the stress source could be responsible for the signaling discrepancy. To address this question, we overexpressed a Rhodopsin-1 mutant prone to aggregate either in vestigial- or engrailed-expressing cells. We observed similar responses to the Presenilin overexpression in the vestigialdomain and to the dDad1 depletion in the engrailed domain. Therefore, the consequences of a PERK/ATF4 branch activation depend on the position of the cell in the Drosophila wing imaginal disc, suggesting interactions of PERK signaling with developmental pathways involved in the determination or maintenance of wing domains.

HSP72 expression is specific to skeletal muscle contraction type

Abstract

Exercise is capable of inducing the cellular stress response and increasing skeletal muscle heat shock protein (HSP) content. HSPs function as molecular chaperones and play roles in facilitating protein folding thereby contributing to muscle proteostasis. To determine the relationship between muscle contraction types, muscle damage, and HSP content, one tibialis anterior (TA) muscle from male Sprague-Dawley rats (n = 5/group) was electrically stimulated while actively lengthening (LC), shortening (SC), or remaining to stagnate (IC) for 15 repetitions (3 sets of five). Two additional LC groups underwent 5 and 10 repetitions. Maximal tetanic tension (MTT) was recorded prior to (pre) and at 5 min after (post) the last contraction. Twenty-four hours after stimulation, TA muscles were removed, processed, and assessed for damage and for HSP25 and HSP72 content. Post-MTT was significantly decreased following 15 LCs, (24%; p < 0.05) but not following 15 SCs or 15 ICs. Post-MTT was also decreased by 8% (p < 0.05), and 18% (p < 0.05) for muscles subjected to 5 and 10 LCs, respectively. HSP72 content increased after all LCs conditions but not following ICs or SCs. HSP25 content remained unchanged following all contractions. Similarly, muscle damage was observed only after LCs and not after other contraction types. In conclusion, muscle HSP72 content can be increased with as few as 5 maximal lengthening contractions and appears to be related to muscle damage. This may have important implications for muscle rehabilitation and exercise training programs.

Role of AccMGST1 in oxidative stress resistance in Apis cerana cerana

Abstract

As detoxification enzymes, proteins in the glutathione S-transferase (GST) superfamily are reported to participate in oxidative stress resistance. Nevertheless, microsomal GSTs (MGSTs), a unique subclass of the GST superfamily associated with membranes, are rarely studied in insects. Here, we isolated an MGST gene in Apis cerana cerana (AccMGST1) and verified its role in oxidative stress response. We found higher expression of AccMGST1 in protective or defensive tissue, that is, the epidermis, which indicated its role in stress resistance. Real-time quantitative PCR (qRT-PCR) analysis indicated that AccMGST1 was upregulated by oxidative stresses at the transcriptional level. In contrast, AccMGST1 expression was inhibited when the antioxidant vitamin C (VC) was fed to experimental bees. Through western blotting, we found that the protein level of AccMGST1 under oxidative stress corresponded to the transcript level. Disc diffusion and mixed-function oxidation (MFO) assays suggested that AccMGST1 can protect not only cells but also DNA against oxidative damage. Furthermore, we discovered that the expression patterns of known antioxidant genes were changed in A. cerana cerana after AccMGST1 was silenced by RNA interference (RNAi). Thus, we concluded that the gene AccMGST1 exerts a significant role in the antioxidant mechanism.

Role of Nkx2.5 in H 2 O 2 -induced Nsd1 suppression

Abstract

Nuclear receptor–binding SET domain–containing protein 1 (Nsd1) acts as a histone lysine methyltransferase, and its role in oxidative stress–related abnormal embryonic heart development remains poorly understood. In the present study, H2O2 decreased the expression of Nsd1 and NK2 transcription factor related locus 5 (Nkx2.5). We further focused on Nkx2.5 modulating the transcription of Nsd1 in response to H2O2. Luciferase activity analysis indicated that a regulatory region from − 646 to − 282 is essential for the basal transcriptional activity, in which, an a Nkx2.5-binding element (NKE) was identified at − 412/− 406 of the Nsd1 promoter by electrophoresis mobility shift assay and a chromatin immunoprecipitation assay. H2O2 obviously reduced the p646-luc promoter activity, and the depletion of Nkx2.5 expression weakened H2O2 inhibition on the p646-luc promoter. The overexpression of Nkx2.5 increase Nsd1 p646-luc promoter activity, but did not affected p646-luc-mut. Furthermore, overexpression and depletion of Nkx2.5 led to the increase and decrease of Nsd1 protein and mRNA levels. These data indicated that H2O2-induced Nsd1 suppression resulted from the decrease of Nkx2.5 expression through the NKE element.

Resveratrol, an activator of SIRT1, improves ER stress by increasing clusterin expression in HepG2 cells

Abstract

Endoplasmic reticulum stress (ER stress) is involved in lipid metabolism and lipotoxicity and can lead to apoptosis. Resveratrol, a sirtuin 1 (SIRT1) agonist, prevents ER stress and improves ER stress-induced hepatic steatosis and cell death. Clusterin is a secreted chaperone and has roles in various physiological processes. However, changes in the expression of clusterin upon ER stress and the connection between SIRT1 and clusterin in protection against ER stress are not well known. In cells treated with tunicamycin, resveratrol increased the expression of clusterin mRNA and protein and the secreted clusterin protein level in conditioned medium. Resveratrol decreased protein expression of the ER stress markers, p-PERK, p-IRE1α, and CHOP, and increased the expression of the ER-associated degradation (ERAD) factors, SEL1L and HRD1, in tunicamycin-treated cells. However, no changes in the expression of these genes were observed in clusterin siRNA-transfected cells. Moreover, increased LAMP2 and LC3 expression and decreased Rubicon expression were observed in cells treated with resveratrol or secreted clusterin. These data suggest that SIRT1 activation by resveratrol attenuates ER stress by promoting protective processes such as ERAD and autophagy pathways and that these protective effects are mediated by clusterin.

Cadmium stress effects indicating marine pollution in different species of sea urchin employed as environmental bioindicators

Abstract

In recent years, researches about the defense strategies induced by cadmium stress have greatly increased, invading several fields of scientific research. Mechanisms of cadmium-induced toxicity continue to be of interest for researchers given its ubiquitous nature and environmental distribution, where it often plays the role of pollutant for numerous organisms. The presence in the environment of this heavy metal has been constantly increasing because of its large employment in several industrial and agricultural activities. Cadmium does not have any biological role and, since it cannot be degraded by living organisms, it is irreversibly accumulated into cells, interacting with cellular components and molecular targets. Cadmium is one of the most studied heavy metal inductors of stress and a potent modulator of several processes such as apoptosis, autophagy, reactive oxygen species, protein kinase and phosphatase, mitochondrial function, metallothioneins, and heat-shock proteins. Sea urchins (adults, gametes, embryos, and larvae) offer an optimal opportunity to investigate the possible adaptive response of cells exposed to cadmium, since these cells are known to accumulate contaminants. In this review, we will examine several responses to stress induced by cadmium in different sea urchin species, with a focus on Paracentrotus lividus embryos. The sea urchin embryo represents a suitable system, as it is not subjected to legislation on animal welfare and can be easily used for toxicological studies and as a bioindicator of environmental pollution. Recently, it has been included into the guidelines for the use and interpretation of assays to monitor autophagy.

Hippo/Mst1 overexpression induces mitochondrial death in head and neck squamous cell carcinoma via activating β-catenin/Drp1 pathway

Abstract

Mammalian Ste20-like kinase 1 (Mst1) is associated with cell apoptosis. In the current study, we explored the regulatory effects of Mst1 on squamous cell carcinoma of the head and neck (SCCHN) in vitro. SCCHN Cal27 cells and Tu686 cells were transfected with adenovirus-loaded Mst1 to detect the role of Mst1 in cell viability. Then, siRNA against Drp1 was transfected into cells to evaluate the influence of mitochondrial fission in cancer survival. Our data illustrated that Mst1 overexpression promoted SCCHN Cal27 cell and Tu686 cell death via activating mitochondria-related apoptosis. Cells transfected with adenovirus-loaded Mst1 have increased expression of DRP1 and higher DRP1 promoted mitochondrial fission. Active mitochondrial fission mediated mitochondrial damage, as evidenced by increased mitochondrial oxidative stress, decreased mitochondrial energy production, and reduced mitochondrial respiratory complex function. Moreover, Mst1 overexpression triggered mitochondria-dependent cell apoptosis via DRP1-related mitochondrial fission. Further, we found that Mst1 overexpression controlled mitochondrial fission via the β-catenin/DRP1 pathways; inhibition of β-catenin and/or knockdown of DRP1 abolished the pro-apoptotic effects of Mst1 overexpression on SCCHN Cal27 cells and Tu686 cells, leading to the survival of cancer cells in vitro. In sum, our results illustrate that Mst1/β-catenin/DRP1 axis affects SCCHN Cal27 cell and Tu686 cell viability via controlling mitochondrial dynamics balance. This finding identifies Mst1 activation might be an effective therapeutic target for the treatment of SCCHN.

Δεν υπάρχουν σχόλια:

Δημοσίευση σχολίου

Αρχειοθήκη ιστολογίου

Translate